

BM BARRETT MAHONY CIVIL & STRUCTURAL CONSULTING ENGINEERS

Infrastructure Report

Project: 20.170

Dundrum Central Development

March 2022

Document No.:

20.170-RP-01

Page i

DOCUMENT CONTROL

Project:	Dundrum Central Development
Project No:	20.170
Document Title:	Infrastructure Report
Document No:	20.170 - RP – 01 PL4

DOCUMENT STATUS

Issue	Date	Description	Orig.	PE	Issue Check
PL1	18.06.2021	Pre-App	DK	JC	JC
PL2	07.01.2022	Draft Planning	DK	JC	JC
PL3	27.01.2022	Minor updates	DK	JC	JC
PL4	08.03.22	Planning Issue	DK	JC	JC

© Copyright Barrett Mahony Consulting Engineers. All rights reserved.

The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by Barrett Mahony Consulting Engineers no other party may use, make use of or rely on the contents of this report. The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by Barrett Mahony Consulting Engineers for any use of this report, other than the purpose for which it was prepared. Barrett Mahony Consulting Engineers accepts no responsibility for any documents or information supplied to Barrett Mahony Consulting Engineers by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made. Barrett Mahony Consulting Engineers has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report's accuracy. No part of this report may be copied or reproduced, by any means, without the written permission of Barrett Mahony Consulting Engineers.

Prepared by:

BMCE

52-54 Lower Sandwith Street Dublin 2 D02WR26 Prepared for:

Land Development Agency

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL w w w . b m c e . i e

CONTENTS

1.	INT	RODUCTION	.1
1.1	G	eneral Description	1
1.2	Р	urpose of this Report	3
1.3	S	ite Topography	3
1.4 1. 1.	E .4.1 .4.2	ngagement with the Local Authorities Meetings DLRCC Report of the Chief Executive, 9 th of July 2021, on the PAC Submission to the Bord	4 4 4
2.	SUF	RFACE WATER DRAINAGE SYSTEM	. 9
2.1	Ir	ntroduction	9
2.2 2. 2. 2.	E .2.1 .2.2 .2.3	xisting Surface Water Infrastructure Existing Site Drainage Existing Surface Water Drainage in The Vicinity of The Site: Drainage Ditch flood level	9 9 9 10
2.3 2. 2. 2. 2. 2. 2. 2. 2. 2.	P 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	roposed Surface Water Drainage System Catchment strategy Estimation of greenfield runoff rate Compliance with the Principles of SuDS SuDS Measure Selection Attenuation Devices Bio-Retention and Tree Pits Detention Basin Filter Trenches	 11 12 13 14 16 17 17 18 18
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	.4.1 .4.2 .4.3 .4.4 .4.5 .4.6 .4.7 .4.8	Catchment A Catchment B1 and B2 SuDS Pollutant Analysis Surface Water Attenuation Storage Interception Storage GSDS Criterion Compliance SuDS CIRIA Pillars of Design SuDS Conclusion	18 18 21 22 22 24 26 26
2.5 site.	A 	ssessment for Flood Risk due to Potential Blockage of the surface water drainage system on	27
3.	FOl	JL DRAINAGE SYSTEM2	28
3.1	E	xisting Foul Drainage System	28
3.2	Р	roposed Foul Drainage System	28
3.3 3. 3.	P .3.1 .3.2	roposed Foul Drainage System Residential Flow – 977 no. units Commercial Flow – 3889 m ²	28 28 28

3	.3.3	Foul Network Design2	9
4.	W	ATER SUPPLY	C
4.1		Existing watermain infrastructure	0
4.2 4 4 4	.2.1 .2.2 .2.3	Proposed Watermains	0 0 1
5. De'	DF VEL	RAINAGE & WATERMAIN DESIGN TO CATER FOR THE PROPOSED PHASING OF THI OPMENT	<u>-</u> 2
5.1		Introduction3	2
5.2		Surface Water Drainage Design & SuDS for the Phasing	4
5.3		Foul Water Drainage Design for the phasing3	4
5.4		Water Supply3	4
6.	TF	ANSPORT INFRASTRUCTURE	5
6.1		Traffic impact and Mobility Management3	5
6.2		Existing Road Access	5
6.3		Proposed Road Accesses to the New Development	5
6.4		Internal Road Network	5
6.5		Pedestrian Access	6
6.6		Cyclists	6
6.7		DMURS Compliance	7
6.8		Stage 1 Road Safety Audit	7
6.9		Stage 1 Quality Audit	7

APPENDIX 1 – EXTRACT FROM SITE INVESTIGATION REPORT

- APPENDIX 2 EXISTING SERVICES MAP
- APPENDIX 3 FLOW LOGGER REPORT FROM LOWFLOW
- APPENDIX 4 WATER AND FOUL DEMAND CALCULATIONS
- APPENDIX 5 IRISH WATER SODA & COF
- APPENDIX 6 CAUSEWAY FLOW CALCULATIONS
- APPENDIX 7 CONTRIBUTING AREAS
- APPENDIX 8 SW AUDIT FEEDBACK FORM

1. INTRODUCTION

1.1 GENERAL DESCRIPTION

The Land Development Agency intend to apply to An Bord Pleanála (the Board) for a 10 year permission for a Strategic Housing Development with a total application site area of c.9.6 ha, on lands at the Central Mental Hospital, Dundrum Road, Dundrum, Dublin 14.

This report will form part of the strategic housing development (SHD) submitted to An Bord Pleanála.

Figure 1.1 – Site Location

The development will consist of the demolition of existing structures associated with the existing use (3,736 sq m), including:

- Single storey former swimming pool / sports hall and admissions unit (2,750 sq m);
- Two storey redbrick building (305 sq m);
- Single storey ancillary and temporary structures including portacabins (677 sq m);
- Removal of existing internal sub-divisions/ fencing, including removal of security fence at Dundrum Road entrance;
- Demolition of section of porch and glazed screens at Gate Lodge building (4 sq m);
- Removal of walls adjacent to Main Hospital Building;
- Alterations and removal of section of wall to Walled Garden.

The development will also consist of alterations and partial demolition of the perimeter wall, including:

- Alterations and removal of section of perimeter wall adjacent to Rosemount Green (south);
- Formation of a new opening in perimeter wall at Annaville Grove to provide a pedestrian and cyclist access;

- Alterations and removal of sections of wall adjacent to Dundrum Road (including removal of existing gates and entrance canopy), including reduction in height of section, widening of existing vehicular access, provision of a new vehicular, cyclist and pedestrian access;
- Alterations and removal of section of perimeter wall adjacent to Mulvey Park to provide a pedestrian and cyclist access.

The development with a total gross floor area of c. 106,770 sq m (c. 106,692 sq m excluding retained existing buildings), will consist of 977 no. residential units comprising:

- 940 no. apartments (consisting of 53 no. studio units; 423 no. one bedroom units; 37 no. two bedroom (3 person) units; 317 no. two bedroom (4 person) units; and 110 no. 3 bedroom units) arranged in 9 blocks (Blocks 02-10) ranging between 2 and 6 storeys in height (with a lower ground floor to Block 03 and Block 10, resulting in part 7 storey), together with private (balconies and private terraces) and communal amenity open space provision (including courtyards and roof gardens) and ancillary residential facilities;
- 17 no. duplex apartments (consisting of 3 no. 2 bedroom units and 14 no. 3 bedrooms units located at Blocks 02, 08 and 09), together with private balconies and terraces.
- 20 no. two and three storey houses (consisting of 7 no. three bedroom units and 13 no. 4 bedrooms units) and private rear gardens located at Blocks 02, 08 and 09).

The development will also consist of 3,889 sq m of non-residential uses, comprising:

- Change of use and renovation of existing single storey Gate Lodge building (reception/staff area) to provide a café unit (78 sq m);
- 1 no restaurant unit (307 sq m) located at ground floor level at Block 03;
- 6 no. retail units (1,112 sq m) located at ground floor level at Blocks 03, 06 and 07;
- 1 no. medical unit (245 sq m) located at ground floor level at Block 02;
- A new childcare facility (463 sq m) and associated outdoor play area located at ground floor level at Block 10; and
- A new community centre facility, including a multi-purpose hall, changing rooms, meeting rooms, storage and associated facilities (1,684 sq m) located at ground and first floor level at Block 06.

Vehicular access to the site will be from the existing access off Dundrum Road, as revised, and from a new access also off Dundrum Road to the south of the existing access.

The development will also consist of the provision of public open space and related play areas; hard and soft landscaping including internal roads, cycle and pedestrian routes, pathways and boundary treatments, street furniture, wetland feature, part-basement, car parking (547 no. spaces in total, including car sharing and accessible spaces); motorcycle parking; electric vehicle charging points; bicycle parking (long and short stay spaces including stands); ESB substations, piped infrastructural services and connections (including connection into existing surface water sewer in St. Columbanus Road); ducting; plant (including external plant for district heating and pumping station); waste management provision; SuDS measures (including green roofs); attenuation tanks; sustainability measures (including solar panels); signage; public lighting; any making good works to perimeter wall and all site development and excavation works above and below ground.

1.2 PURPOSE OF THIS REPORT

This report considers the proposed development's main infrastructural elements and how they connect to the public infrastructure in the area.

In particular, foul and surface water drainage, water supply and road engineering aspects are addressed. This report should be read in conjunction with the following drawings submitted with the planning application:

DCD-BMD-00-00-DR-C-1000	Roads Layout & Levels
DCD-BMD-00-00-DR-C-1001	Road Finishes, Road Markings & Road Signage Layout
DCD-BMD-00-00-DR-C-1002	Dundrum Road Access Junction (South)
DCD-BMD-00-00-DR-C-1003	Dundrum Road Access Junction (North)
DCD-BMD-00-00-DR-C-1004	Vehicle Tracking . Refuse Vehicle (Twin Rear Axle)
DCD-BMD-00-00-DR-C-1005	Vehicle Tracking . Dublin Fire Brigade Tender Vehicle
DCD-BMD-00-00-DR-C-1011	Typical Road Cross-Sections Sheet 1 of 3
DCD-BMD-00-00-DR-C-1012	Typical Road Cross-Sections Sheet 2 of 3
DCD-BMD-00-00-DR-C-1013	Typical Road Cross-Sections Sheet 3 of 3
DCD-BMD-00-00-DR-C-1020	Buried Surface Water Drainage Layout
DCD-BMD-00-00-DR-C-1021	Buried Foul Water Drainage Layout
DCD-BMD-00-00-DR-C-1022	Buried Foul Water & Surface Water Drainage Layouts Combined
DCD-BMD-00-00-DR-C-1023	Undercroft & Basement Car Parking Buried Drainage Layout
DCD-BMD-00-00-DR-C-1025	Surface Water Overland Flow Routes
DCD-BMD-00-00-DR-C-1030	SuDS Layout
DCD-BMD-00-00-DR-C-1039	Existing Buried Drainage Layout
DCD-BMD-00-00-DR-C-1040	Buried Watermain Layout
DCD-BMD-00-ZZ-DR-C-1050	Site Perimeter Foundation Sections Sheet 1 of 2
DCD-BMD-00-ZZ-DR-C-1051	Site Perimeter Foundation Sections Sheet 2 of 2
DCD-BMD-ZZ-ZZ-DR-C-1100	Road Long-sections (Sheet 1 of 2)
DCD-BMD-ZZ-ZZ-DR-C-1101	Road Long-sections (Sheet 2 of 2)
DCD-BMD-00-00-DR-C-1110	Foul Water Drainage Longitudinal Sections Sheet 1 of 3
DCD-BMD-00-00-DR-C-1111	Foul Water Drainage Longitudinal Sections Sheet 2 of 3
DCD-BMD-00-00-DR-C-1112	Foul Water Drainage Longitudinal Sections Sheet 3 of 3
DCD-BMD-00-00-DR-C-1115	Surface Water Drainage Longitudinal Sections Sheet 1 of 3
DCD-BMD-00-00-DR-C-1116	Surface Water Drainage Longitudinal Sections Sheet 2 of 3
DCD-BMD-00-00-DR-C-1117	Surface Water Drainage Longitudinal Sections Sheet 3 of 3
DCD-BMD-00-00-DR-C-1200	Road & Hardstanding Details Sheet 1 of 2
DCD-BMD-00-00-DR-C-1201	Road & Hardstanding Details Sheet 2 of 2
DCD-BMD-00-00-DR-C-1205	SuDS Details. Typical Green & Blue Roof Details
DCD-BMD-00-00-DR-C-1206	SuDS Details. Permeable Paving Details
DCD-BMD-00-00-DR-C-1207	SuDS Details. Filter Drain Typical Details
DCD-BMD-00-00-DR-C-1208	SuDS Details. Typical Stormtech Attenuation Tank Details
DCD-BMD-00-00-DR-C-1209	SuDS Details. Typical Bio-Retention Area & Tree Pit Details
DCD-BMD-00-00-DR-C-1210	SuDS Details. Swales, Detention Basin & Over-the-edge Drainage
DCD-BMD-00-00-DR-C-1220	Foul Water Lifting Station Details Sheet 1 of 2
DCD-BMD-00-00-DR-C-1221	Foul Water Lifting Station Details Sheet 2 of 2
DCD-BMD-00-00-DR-C-1225	Standard Surface Water Drainage Details

1.3 SITE TOPOGRAPHY

A detailed topographical survey of the existing site has been prepared. There is considerable variation in ground levels across the site. In broad terms the main part of the site slopes down gradually from the southwest corner towards the northeast corner, from +45.21m OD down to +38.76m OD. The western portion of the site slopes down towards the Dundrum Road entrance at +38.44m OD. These low points are the furthest locations from the high topography in the south corner at a distance of over 400m away. Figure 1 shows typical spot levels across the site.

Fig 1.2 – Summary of the Existing Site Topography Superimposed on Topographical Survey Drawing. (Ordnance Datum Levels).

1.4 ENGAGEMENT WITH THE LOCAL AUTHORITIES

1.4.1 Meetings

Meetings were held with DLRCC, via Microsoft Teams, on the 17th of November 2020 and the 26th of March 2021 to discuss the surface water and foul water drainage proposals. Mr Bernard Egan and Ms Elaine Carroll from DLRCC were in attendance.

Another meeting was held via Microsoft Teams with Ms Elaine Carroll from DLRCC on the 3rd of June 2021 to discuss the proposed drainage network and strategy.

Email correspondence with Irish Water and with DLRCC continues.

1.4.2 DLRCC Report of the Chief Executive, 9th of July 2021, on the PAC Submission to the Bord

Set out below are Barrett Mahony responses to the items raised in the DLRCC Drainage Planning Report in relation to surface water drainage. This section is abstracted from Appendix B of the Chief Executives report. DLRCC text is shown below in italics. 1. "The applicant proposes to limit the outflow from the site to 38 l/s based on the entire site area of 8.41ha being drained, using SAAR value 772 and Soll Type 4. Although the discharge rate and volume of attenuation appear sufficient for this site, the accompanying modelled data does not seem to match the layout submitted. There are flow control devices missing from the modelling and additional storage areas have been Included that are not the surface water drainage layout drawing. Also, the site Is divided into five catchments, with separate outfalls for each, and not two as presented in the Infrastructure report. In order to assess the application, each catchment will need to be modelled and presented separately to ensure they are designed appropriately for the area of the site they serve. It is also unclear what contributing areas have been used in the modelling and where or how reduced run-off coefficients have been applied. The applicant Is requested to resubmit the Infrastructure report, surface water drainage layout and modelling results to demonstrate that all five catchments have been assessed Independently as well as collectively. The networks modelled should match those shown on the drawing. Additional labels should be added to the modelling outputs to clearly Identify each catchment, attenuation storage area and flow control device. The applicant shall tabulate the contributing areas for each catchment In accordance with type and run-off coefficient applied. The applicant shall clearly state the total attenuation volume for the site, and each catchment, and ensure the discharge rate from each flow control device Is clearly shown on the surface water drainage layout drawing."

<u>BM Response</u>: The requested information has been provided by BM in this updated report and in the updated drawings.

2. "It is unclear if this site is to be constructed in phases. If phased construction is proposed then the applicant must demonstrate how discharge rates will be limited and sufficient attenuation volumes and Interception/treatment of run-off provided for each phase of the work. Sufficient detail must be provided in the Construction Management Plan regarding the measures proposed to construct the surface water drainage system during each phase of works while protecting the existing surface water drainage elements. "

<u>BM Response</u>: Phasing is addressed in the CEMP report submitted with the application, there are five phases proposed. The impact of the phasing on the surface water system is dealt with in this updated report. Refer to Section 5 of this report. Each phase of the development incorporates a full suite of SuDS measures, in accordance with GDSDS. The attenuated outflow from each phase does not exceed the Qbar value for the area covered by that phase.

3. "There appears to be a section of the site along the east boundary that is pumped in "Catchment B1". The applicant should note that pumping of surface water run-off is not acceptable. The applicant shall amend their surface water drainage design to remove the need for surface water pumping. "

<u>BM Response</u>: Catchment B1 is not pumped. It drains by gravity through the existing wall opening into the adjacent open drain as shown on BM drg no. C1020.

4. "There appears to be a section of the drainage system to the north-west of the site that drains unattenuated, according to the surface water layout. The applicant is requested to amend their design to ensure that all areas of the site are attenuated and Intercepted/treated prior to restricted discharge from the site. "

<u>BM Response</u>: This area, at the gate lodge, now drains into a bio-retention area. Please refer to BM drawing no. C1020.

5. "The applicant Is requested to submit supporting details, Including cross-sections, of each of the proposed outfalls from the site. "

<u>BM Response</u>: Sections through each outfall are shown on the longitudinal surface water drainage sections drawing, drg. No. C1115-C1117. Details of a typical outfall to the existing on-site open ditch are shown on BM drawing no. C1225. Also refer to the SW layout drawing C1020.

6. "As standard, the applicant Is requested to submit long-sections of the surface water drainage system, clearly labelling cover levels, Invert levels, pipe gradients and pipe diameters. "

<u>BM Response</u>: Refer to BM drawing no's C1115 – C1117.

7. As standard, the applicant shall provide details of maintenance access to the green roofs and should note that, in the absence of a stairwell type access to the roof, provision should be made for alternative maintenance and access arrangements such as external mobile access that will be centrally managed. The applicant should comment on the compatibility of the green roofs with PV panels if they are to be Incorporated Into the design.

<u>BM Response</u>: Roof access arrangements are shown on the Architect's drawings accompanying the application. Areas of PV panels are indicated. Green roofs will not be provided beneath PV panels.

8. "As standard, the applicant is requested to provide a penstock in the flow control device chamber and ensure that the flow control device provided does not have a bypass door. The applicant shall also clarify whether a silt trap Is being provided in the flow control device chamber and if not to make provision for same."

<u>BM Response</u>: A penstock gate valve is shown on the typical flow control device chamber on BM drawing no. C1208.

9. As standard, the applicant is requested to confirm that required clearances are provided between other utilities and confirm the actual depths of cover to each burled attenuation system. The applicant shall Include confirmation from the chosen manufacturer of the storage systems that the specific model chosen, with the depth of cover being provided, has the requested load bearing capacity to support the loading that may Imposed upon it.

<u>BM Response</u>: The required clearances are provided between other utilities and the surface water drains. A plan layout drawing showing the foul drainage and surface water drainage has been prepared to ensure all conflicts are addressed. The site watermain layout plan has been coordinated with this plan. Refer to BM drawing C1022. Longitudinal sections throughout the foul and surface water drains have also been prepared.

The depth of cover to each attenuation tank is shown on BM drawing no. C1020. The tanks will be designed to support vehicular loading (fire tender).

10. "As standard, the applicant Is requested to confirm that a utilities clash check has been carried out ensuring all utilities' vertical and horizontal separation distances can be provided throughout the scheme. The applicant should demonstrate this with cross-sections at critical locations such as junctions, site thresholds and connection points to public utilities. Minimum separation distances shall be in accordance with applicable Codes of Practice. "

<u>BM Response</u>: A utilities clash check has been carried out. A plan layout drawing showing the foul drainage and surface water drainage has been prepared to ensure all conflicts are addressed. The site watermain layout plan has been coordinated with this plan. Refer to BM drawing C1022. Longitudinal sections throughout the foul and surface water drains have also been prepared.

11. "Although the applicant has tabulated that the required volume can be intercepted/treated, they have not demonstrated that the entire area of the site is accommodated. As standard, the applicant Is requested to show the options being proposed for Interception and treatment with contributing areas on a drawing together with-an accompanying text and tabular submission showing the calculations, to demonstrate that the entire site is in compliance with GDSDS requirements. The applicant should note that over-provision in one location does not compensate for under provision elsewhere. "

<u>BM Response</u>: The requested information has been provided in this report and on the BM SuDS layout drawing, drawing no. C1030.

12. "If the applicant proposes SuDS measures that Incorporate the use of infiltration, the applicant Is requested to provide details of each SuDS measure and confirm whether it will be lined/tanked or not. If lined/tanked systems are to be used, then the applicant will be requested to explain the rationale behind this. If unlined systems are to be used then the applicant Is requested to demonstrate on a drawing that all Infiltration SuDS proposals, Including the attenuation systems, have a 5m separation distance from building foundations and 3m separation from site boundaries."

<u>BM Response</u>: All SuDS devices are typically lined with a permeable geotextile, as shown in the typical SuDS details drawings, drg no's C1205 to C1210. Impermeable membranes are to be provided, as noted in these drawings and on the surface water layout plan C1020, where a device is within 5 metres of building foundations or within 3metres of a site boundary. For permeable paving areas not taking additional flow, an impermeable lining within 1.5m will only be provided of boundaries or foundations. Refer to BM drawing C1206.

13. "A Stormwater Audit will be requested for this application. In accordance with the Stormwater Audit policy, the audit shall be forwarded to DLRCC prior to lodging the planning application. All recommendations shall be complied with, unless agreed in writing otherwise with DLRCC. "

<u>BM Response</u>: A Stormwater Audit has been prepared by JBA Consulting Engineers. Please refer to Appendix 8. The recommendations in the audit have been complied with.

14. "The applicant Is requested to confirm if access through the north-east corner of the site can be provided for maintenance access of the ditch. There is a door in the wall in the northeast corner that allows access to the ditch."

<u>BM Response</u>: The door provides access to lands owned by DLRCC. This allows access up to the edge of the ditch. The open ditch, along its length at the back of boundary wall is in third party ownership before entering an adjacent surface water sewer in DLR ownership.

1.4.2.1 Email Dated 10/03/2022 form Ms Elain Carroll, DLRCC

Email response on the submitted surface water report (attached in Appendix 8):

"We would consider using the local Soil Type SPR for landscaped areas to be drained, rather than the proposed run-off factor of 0.3, would be more appropriate. Other than this the other items accepted by the Auditors appear to be acceptable in principle."

BM Response: The runoff factors for landscaped areas will be revisited prior to construction.

2. SURFACE WATER DRAINAGE SYSTEM

2.1 INTRODUCTION

This chapter follows the guidelines set out in Greater Dublin Strategic Drainage Study (GDSDS) and the CIRIA 2015 SuDS Manual.

The aim of any SuDS strategy is to ensure that a new development does not negatively affect surrounding watercourse systems, existing surface water networks and groundwater systems. This SuDS strategy will achieve these aims by using a variety of SuDS measures within the site. These measures include water interception, treatment, infiltration and attenuation.

The SuDS strategy will be developed with the following steps:

- 1. The existing greenfield run-off of the development site will be calculated and used as the minimum benchmark for the SuDS design. This run-off calculation is based on the drained area of the new development. The post development run-off will not exceed the greenfield run-off.
- 2. A set of SuDS measures will be chosen based on their applicability and usage for the site.
- 3. A "FLOW" model will be created to analyse the rainfall on the site and the effectiveness of the proposed SuDS measures.
- 4. If effective, these SuDS measures will be incorporated into the proposed design.

2.2 EXISTING SURFACE WATER INFRASTRUCTURE

The lands/roads surrounding the site contain a number of surface water sewers and a combined sewer. The River Slang runs south to north, approximately 70m to the west of the site and a drainage ditch runs through the site and northwards along the eastern boundary as shown in Figure 2.1.

2.2.1 Existing Site Drainage

Existing site drainage confirmed by CCTV and dye testing have shown the existing buildings on site discharging to a combined drainage system on site. This system discharges to the Ø300mm combined sewer in the Dundrum Road, connecting at the current site entrance.

2.2.2 Existing Surface Water Drainage in The Vicinity of The Site:

a) The River Slang: The River Slang runs from south of Dundrum Village northwards down to the River Dodder and passes approximately 70 metres west of the western site boundary on the Dundrum Road. The estimated 100-year storm level in the river is approximately 1.5metres lower than the lowest point of the site, at the existing Dundrum Road entrance. Predicted floods, for storms with 1 in 10, 1 in 100 & 1 in 1000year return periods are shown on the OPW CFRAMS Flood Maps. This flooding does not encroach on the subject site. Refer to the Site-Specific Flood Risk Assessment for further information. b) Public Sewer and drainage ditch on the south and east boundary: A 525mm diameter surface water sewer enters the south side of the site from Rosemount Green. Refer to Figure 2.1 below. This connects into an open drainage ditch which runs west to east across the site along the southern edge of the walled garden and discharges through a grated opening in the boundary wall (Location B1 in Figure 2.1 below) where it continues as a drainage ditch running northwards just along and outside of the east boundary wall. Property Registration Authority maps indicate that the drainage ditch is in third party ownership along the outside of the wall. There are no records of flooding in this watercourse. Flow monitoring by LowFlow Ltd was carried out at Location B1, refer to the report attached in Appendix 3. The report indicates that there is a correlation between the flow in the channel and rainfall events.

2.2.3 Drainage Ditch flood level

The Lowflo flow logger results showed that the depth of water in the drainage ditch varied between 25mm and 180mm during the two and a half months of recordings. The drainage ditch is approximately 1m deep. There is insufficient data to calculate a flood level for the 1 in 100 year storm event. In the case that the level in the ditch rises, the head of water in the pipe network discharging to it, will be sufficient to push the water through and out into the ditch.

Figure 2.1 - Aerial view of the site with two surface water drainage connection locations indicated.

2.3 PROPOSED SURFACE WATER DRAINAGE SYSTEM

The proposed surface water drainage system is designed to comply with the 'Greater Dublin Strategic Drainage Study (GDSDS) Regional Drainage Policies Technical Document – Volume 2, New Developments, 2005' and the 'Greater Dublin Regional Code of Practice for Drainage Works, V6.0 2005'. CIRIA Design Manuals C753, C697 and C609 have also been used to design the surface water drainage system within the site.

2.3.1 Catchment strategy

The development will be split into three catchments. The catchments will be attenuated separately by means of blue roofs and attenuation tanks, which follow approximately the existing site topography and natural drainage routes on site. Catchment A drains to the Slang, via an existing surface water sewer. Catchments B drains to the open drainage ditch on site (B1) or just outside the site (B2). Connection points 'A', 'B1' and 'B2' shown in Figure 2.1 and 2.2.

2.3.1.1 Catchment Area

The total site area is c9.6ha. The positively drained area on site is c6.46ha in size, comprising of Catchment A (1.406ha), Catchment B1 (4.05ha) and Catchment B2 (1.01ha). The total area will collect all the surface water drainage into an underground pipe network. The drainage system will use different SuDS measures in the treatment train, which will have an influence on the runoff coefficients. The more porous the material, the lower the runoff coefficient. Surface materials will consist of, but not limited to permeable paving, intensive and extensive green/blue roofs and podiums, impermeable roofs, bio-retention areas, filter strips, a detention basin, impermeable hardstanding, tree pits and landscaped areas. Please refer to the BMCE SuDS layout drawing C1030 for the illustration and location of the SuDS measures and attenuation storage areas.

The runoff coefficients used in the calculations are as requested by DLR:

Table 2.1: Runoff Coefficients

Type of areas	CV
Landscaping (Grass / Soft)	0.3
Intensive Green Roof / Podium	0.8
Extensive Green Roof	0.8
Permeable Paving	0.8
Impermeable Surface (incl tree pits)	0.9
Standard Roof (impermeable)	0.95

Please refer to Appendix 7 for a tabulated schedule of all the contributing areas

2.3.2 Estimation of greenfield runoff rate

In accordance with the IH124 method, the greenfield runoff for existing undeveloped sites measuring less than 50ha can be estimated using the following formula:

Qbar_{rural} (in m³/s) = 0.00108 x (0.01 x AREA)^{0.89} x SAAR^{1.17} x SPR^{2.17} where:

- Obar_{rural} is the mean annual flood flow from a catchment
- AREA is the area of the catchment in ha.
- SAAR is the standard average annual rainfall for the period 1981-2010 Annual Average Rainfall Grid produced by Met Éireann.
- SPR is Standard Percentage Runoff coefficient for the SOIL category geotechnical report.

Rainfall data for the site was sourced from an Annual Average Rainfall (AAR) Grid (1981-2010) produced by Met Éireann (Available from: http://www.met.ie/climate/products03.asp). The rainfall data for the Irish Grid Coordinates closest to the site indicates a SAAR value of 772mm is appropriate.

east	north	Annual Average Rainfall (mm)
317000	226000	928
317000	227000	876
317000	228000	822
317000	229000	772
317000	230000	744
317000	231000	744
317000	232000	740

Table 2.2: Met Éireann Annual Average Rainfall (AAR) Grid (1981-2010) Extract

Therefore, Qbar_{rural} for a 50ha site has been calculated as follows:

Obar _{rural}	(for a	50ha	site)
Qbar _{rural}	(for a	50ha	site)

= 0.00108 x (0.01 x 50)^{0.89} x 772^{1.17} x 0.45^{2.17} = 0.246314 m³/s = 246.315 l/s

Interpolating linearly, this corresponds with a Qbar figure for the drained area (6.467ha) of 31.86l/s. The discharge limit to the site has been taken as a conservative 29.0 l/s. The runoff rate for each catchment is set out in the table below:

Catchment	Area (m ²)	Drained Area	Calculated	Proposed
outeriment		(m ²)	Qbar (I/s)	Qbar (I/s)
Catchment A	29 747	14 059	6.925	7.0
Catchment B1	47 961	40 499	19.951	18.0
Catchment B2	17 788	10 116	4.998	4.0
Total	95 496*	64 673	31.86	29.0

Table 2.3: Runoff rate per catchment

*Please note, the red line has a 374m² area outside of the drained catchment area for the surface water drainage connection in the public road to the surface water sewer in St Columbus Road.

2.3.3 Compliance with the Principles of SuDS

2.3.3.1 Compliance with the principles of the GDSDS

The proposed development will be designed in accordance with the principles of Sustainable Drainage Systems (SuDS) as embodied in the recommendations of the Greater Dublin Strategic Drainage Study (GDSDS) and will significantly reduce run-off rates and improve storm water quality discharging to the public storm water system. The GDSDS addresses the issue of sustainability by requiring designs to comply with a set of drainage criteria which aim to minimize the impact of urbanization by replicating the run-off characteristics of the greenfield site. The criteria provide a consistent approach to addressing the increase in both rate and volume of run-off, as well as ensuring the environment is protected from any pollution from roads and buildings. These drainage design criteria are as follows:

- Criterion 1 River Water Quality Protection
- Criterion 2 River Regime Protection
- Criterion 3 Flood Risk Assessment
- Criterion 4 River Flood Protection

The requirements of SuDS are typically addressed by provision of the following:

- Interception storage
- Treatment storage (commonly addressed in interception storage)
- Attenuation storage
- Long term storage (not applicable if growth factors are not applied to Qbar when designing attenuation storage)

2.3.3.2 Compliance with the principles of the CIRIA C573 SuDS Manual

The C753 SuDS Manual explains that the primary function of SuDS measures is to protect watercourses from any impact due to the new development. However, SuDS can also improve the quality of life in a new development and urban spaces by making them more vibrant, visually attractive, sustainable and more resilient to change. This document explains the wider social context of SuDS and how SuDS can deliver high quality drainage while supporting urban areas to cope better with sever rainfall both in present and future.

There are four main categories of benefits that can be achieved by SuDS:

- 1. Water Quantity (mitigate flood risk & protect natural water cycle)
- 2. Water Quality (manage the quality of the runoff to prevent pollution)
- 3. Amenity (create and sustain better places for people)
- 4. Biodiversity (create and sustain better places for nature)

2.3.4 SuDS Measure Selection

Below are the applicable SuDS measures which have been chosen for the site. The proposed site has been divided into 3no sub-catchment areas. Sub catchment A is the north-western part of the site, connecting into the public surface water sewer network at Dundrum Road, adjacent to the discharge point into the River Slang. Sub catchment B1 and B2 will drain the remainder of the site, connecting to the existing drainage ditch on the eastern side of the site.

The runoff generated from the catchments will be attenuated in storage structures below ground and in the blue roof attenuation systems. The proposed attenuation systems are explained in section 2.3.5.

A wide range of SuDS measures are proposed across the site to maximise interception and treatment.

2.3.4.1 Green Roofs – General

Green roofs are areas of living vegetation, installed on the top of buildings. They provide water quality, water quantity, amenity and provide biodiversity benefits. Green roofs also intercept rainfall at source reducing the reliance on attenuation storage structures.

Refer to the Barrett Mahony SuDS detail drawing no. 1205 for typical roof details.

2.3.4.2 Green Roof – Extensive:

Extensive roofs have low substrate depths and therefore low loadings on the building structure, they are lightweight and have a low cost to maintain. These systems cover the entire roof area with hardy, slow growing, drought resistance, low maintenance plants and vegetation, such as sedums. The planting usually matures slowly, with the long-term biodiverse benefits being the sought-after results. These roofs are typically only accessed for maintenance and are usually comprised of between 20mm – 150mm overall total depth.

Extensive green roofs have the effect of providing some initial storage of rainwater, while also reducing the rate at which rainwater from heavier rainfall events will discharge to the main attenuation tank. It can also help to filter the run-off, removing any pollutants and resulting in a higher quality of water discharging to the drainage system. A typical extensive green roof system can intercept and retain over 30 litres/m² (i.e. 30 mm) depending on the build-up. Since these roofs are exposed to the Irish climate, there is a high probability that the roof will not be completely dry, and the storage capacity will be compromised on any given rainfall event. Thus, the more conservative estimate of 12 liters/m² (12mm) interception storage will be assumed. Refer to BMCE drawing C1205 for details.

2.3.4.3 Green Roof – Intensive

Intensive green roofs are designed to sustain more complex landscaped environments that can provide high amenity and biodiverse benefits. They are planted with a range of plants, including grasses, shrubs, trees and may also include water features, as well as hard landscape paved areas. They are designed to be accessible and normally require regular maintenance.

Intensive paved soft landscaped roofs will be proposed on some of the apartment blocks roofs in the public amenity areas and in some courtyard podium areas over the basement car parking. The use of intensive green roofs will also allow the planting of large shrubs, small trees, and small water features within the podium area. These features improve the amenity value for the residents. The build-up selected for the Intensive Green Roof on the top of the roofs will include an interception tray to capture the first 12mm of rainfall falling on each roof, providing an intercept and retain capacity of 12 litres/m² (minimum). Refer to BMCE drawing C1205 for details.

2.3.4.4 Permeable Paving

Permeable paving provides a surface suitable for pedestrian and/or vehicular traffic, while also allowing rainwater to infiltrate through the surface and into the underlying structural layers. The water is temporarily stored beneath the overlying surface before slowly infiltrating. Permeable paving systems are an effective way of managing surface water runoff close to its source.

The car parking spaces, podium courtyards and footpaths throughout the site will be made up of permeable paving. The larger open spaces and car parking in Catchment A and B will be linked with the overall management train used in each respective catchment.

By providing a raised drainage outlet above the base of the coarse graded gravel bed it is possible to achieve interception storage. Raising the invert of the drainage pipe to 100mm above the gravel bed gives 30mm interception storage @ 30% voids in the gravel. Refer to BMCE drawing C1206 for details.

2.3.5 Attenuation Devices

a) Buried Tanks

Attenuation tanks are used to create below-ground void space for the temporary storage of surface water before infiltration, controlled release or use. Attenuation tank shape can be constructed up using Stormtech type systems, which offer flexibility in size, shape and constructability of the tank. The tanks can be tailored to suit specific site characteristics. Refer to BMCE drawing C1208 for details. Tanks formed with proprietary cellular units or concrete tanks have also bene used on site where the available space is constrained

Figure 2.6 – Buried Tank section

b) Blue Roofs

A blue roof is a solution for urban areas where options for ground-based attenuation systems are limited. The blue roof will discharge water through an orifice control device to the surface water network. The blue roofs will be combined with the intensive and extensive green roof systems.

Figure 2.7 – Blue Roof Detail

2.3.6 Bio-Retention and Tree Pits

Both catchments contain bio-retention areas and tree pits to treat and intercept runoff from neighbouring road surfaces and to take the rainwater from adjacent rainwater downpipes. These systems also allow some direct infiltration to the ground since they will be lined with permeable geotextile material. In each case there is a slotted drainage pipe above the base which collects and re-directs excess runoff to the stormwater network. For the location of these SuDS measures on BMCE drawing C1020 and C1030.

2.3.7 Detention Basin

Detention systems are primarily designed to reduce runoff rate from a contributing drainage area. A detention basin treats and intercepts runoff. Infiltration can also occur. The detention basin proposed in the eastern part of the site will cater for the adjacent roads. This will allow road runoff to be treated and intercepted in the basin and be discharged in a controlled state.

2.3.8 Filter Trenches

Filter Trenches systems are shallow landscaped depressions adjacent to the roadway. The trenches collect, intercepts and treat the road runoff. Filter trenches can reduce the runoff rates and volumes of surface water. They treat pollution using engineered soils and vegetation. They are very effective in delivering interception and treatment storage. By including filter strips within the depression, the effectiveness of the overall system in meeting the requirements of water quality, water quantity, amenity and biodiversity is significantly improved.

2.4 SUDS MANAGEMENT TRAIN

The SuDS measures proposed are linked in series, and this is commonly known as a SuDS Management Train, (SMT). The SMT ensures that rainwater falling on a site is captured, conveyed, stored, intercepted and removed of any pollutants, correctly and efficiently before it is discharged back into the surrounding water course of network.

A robust SMT will ensure that the most effective measures are utilised in the correct sequence throughout the site. Table 26.7 (Figure 2.2 below) in (CIRIA, SuDS Manual 2015) illustrates the effectiveness of each SuDS measure along the SMT.

2.4.1 Catchment A

The following flowchart was created to illustrate the drainage train that each block will use. This flowchart should be read in conjunction with the proposed drainage drawing C1020 and SuDS layout C1030.

2.4.2 Catchment B1 and B2

The following flowchart was created to illustrate the drainage process that each block will use. This flowchart should be read in conjunction with the proposed drainage drawing.

Proposed SuDS management trains on this site are as follows:

1/

SuDS component	Interception ¹	Close to source/ primary treatment	Secondary treatment	Tertiary treatment
Rainwater harvesting	Y			
Filter strip	Y	Y		
Swale	Y	Y	Y	
Filter drain	Y	1	Y	
Permeable pavement	Y	Y		
Bioretention	Y	Y	Y	
Green roof	Y	Y		
Detention basin	Y	Y	Y	
Pond	3	Y2	Y	Y
Wetland	3	Y2	Y	Y
Infiltration system (soakaways/ trenches/ blankets/basins)	Y	Y	Y	Y
Attenuation storage tanks	Y*			
Catchpits and gullies		Y		
Proprietary treatment systems		Y5	Ys	Ys

Figure 2.9 - C753 SuDS Manual Table 26.7

Figure 2.10 – BM SuDS Layout drg C-1030

2.4.3 SuDS Pollutant Analysis

To ensure that the SuDS measures proposed are sufficient in removing pollutants from the generated run-off, a SuDS pollutant analysis has been carried out. This is performed in conjunction with the guidelines and steps set out in Section 26.7 of CIRIA SuDS Manual (2015).

The main form of pollutant is from surface water run-off from roofs, roads and driveways. Table 26.2 of CIRIA SuDS Manual 2015 highlights the pollution hazards for different land uses (extract below Figure 2.4). The pollution hazards on site are generally 'very low" from roofs. Roads are classed as 'Low'.

TABLE	Pollution hazard indices for different land use classifications				
26.2	Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
	Residential roofs	Very low	0.2	0.2	0.05
	Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
	Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4

Figure 2.11 – C753 SuDS Manual Table 26.2 Extract

Given that a very low to low pollution index applies, then the 'Simple Index Approach,' is applied and can be summarised below.

Total SuDS Mitigation Index ≥ Pollution Hazard Index

By inspection the extensive use of SuDS measures throughout the site ensures that criterion is met, considering typical road area. Using Table 26.2 and Table 26.3, from the SuDS manual we can compare the mitigation index for permeable paving (taking road drainage) with the hazard index for Roads:

Table 2.4 - Pollution Hazard Assessment for road drained through permeable paving

	Total SuDS Mitigation Index		Pollution Hazard Index	
	(Table 26.3)		<u>(Table 26.2)</u>	<u>Status</u>
Total Suspended Solids	0.7	>	0.5	О.К.
Metals	0.6	>	0.4	O.K.
Hydrocarbons	0.7	>	0.4	O.K.

From Table 2-2 above it is clear that the SuDS strategy for the site is effective in removing pollutants from the surface water and therefore protecting downstream watercourses.

2.4.4 Surface Water Attenuation Storage

The GDSDS requires that flood waters be managed within the site for a 1 in 100-year flood. The surface water from each sub-catchment will flow into an attenuation tank or detention basin, which has been designed for that drained area.

The surface water system within each catchment has been hydraulically modelled in CAUSEWAY FLOW software. Please see Appendix 6 for full breakdown of calculations.

Attenuation Structure	Catchment	Size (m ³)	Discharge (I/s)
Tank H (Block 10)	А	364	2.0
Tank J	А	690	4.0
Tank L (Block 10)	А	154	2.0
Tank A	B1	423	4.0
Tank E (Block 7)	B1	289	2.0
Tank D (Block 7 + 3)	B1	254	2.0
Tank B	B1	280	2.0
Tank C	B1	132	2.0
Tank K (Block 2)	B2	364	1.0
Tank G	B2	274	4.0

Table 2.5: Summary of Attenuation Structures

2.4.4.1 Maintenance of Attenuation Systems

The SuDS detail drawings submitted with this report set out the maintenance requirements for the various SuDS measures proposed.

2.4.5 Interception Storage

The GDSDS requires that Interception storage, where provided, should ensure that at a minimum the first 5mm and preferably the first 10mm of rainfall is intercepted on site and does not directly pass to the receiving watercourse.

Interception storage can be attained using SuDS features which allow the rainwater to infiltrate into the ground, evaporate into the atmosphere or transpire through vegetation. Soft landscaping and planted areas are conservatively taken as providing natural interception storage of 15mm. Interception storage volumes for each Sub-catchment areas shown below:

2.4.5.1 Interception Storage - Catchment A

Interception storage required m^3 = Total catchment area (m^2) x minimum rainfall (mm) Interception storage required for Catchment A = 29 747m² x 10mm = 297.47m³

Table 2.6: Interception Storage Catchment A

Type of areas	Areas (m ²)	Storage (I/m ²)	Capacity (m ³)
Landscaping (Grass / Soft)	15 682	15	235.23
Green Roof: Intensive / Extensive	5 312	12	63.744
Permeable Paving	850	30	25.50
Impermeable Paving	5 929	0	0.00
Tree Pits	117	75	8.775
Bio Retention Areas	407	75	30.525
Filter Trenches	63	75	4.725
Standard Roof (impermeable)	1 372	0	6.75
Total	29 747	-	375.249

The proposed Interception storage meets the preferred 10mm storage criteria

2.4.5.2 Interception Storage - Catchment B1

Interception storage required m^3 = Total catchment area (m^2) x minimum rainfall (mm). Interception storage required for Catchment B1 = 47 961m² x 10mm = 479.61m³

Table 2.7 – Interception Storage Catchment B1

Type of areas	Areas (m ²)	Storage (I/m ²)	Capacity (m ³)
Landscaping (Grass / Soft)	17 812	15	267.18
Green Roof: Intensive / Extensive	12 905	12	154.86
Permeable Paving	1 360	30	40.80
Impermeable Paving	7 804	0	0.00
Tree Pits	305	75	22.875
Bio Retention Areas	1 182	75	88.65
Filter Trenches	24	75	1.80
Standard Roof (impermeable)	6 569	0	0.00
Total	47 961	-	576.165

The proposed Interception storage meets the preferred 10mm storage criteria.

2.4.5.3 Interception Storage - Catchment B2

Interception storage required m³ = Total catchment area (m²) x minimum rainfall (mm) Interception storage required for Catchment B2 = 17 788² x 10mm = 177.88m³

Table 2.8 – Interception Storage Catchment B2

Type of areas	Areas (m ²)	Storage (I/m ²)	Capacity (m ³)
Landscaping (Grass / Soft)	8 906	15	133.59
Green Roof: Intensive / Extensive	3 322	12	39.864
Permeable Paving	962	30	28.86
Impermeable Paving	2 986	0	0
Tree Pits	222	75	16.65
Bio Retention Areas	66	75	4.95
Filter Trenches	35	75	2.625
Standard Roof (impermeable)	1 289	0	0
Total	17 788	-	226.539

The proposed Interception storage meets the preferred 10mm storage criteria.

2.4.5.4 Green Roof Provision

Green or blue roofs are provided on all apartment block roofs. The green roof provision is 21 539m² and exceeds the 60% of the total roof areas required by DLR.

2.4.6 GSDS Criterion Compliance

2.4.6.1 Criterion 1 GDSDS – River Water Quality Protection

Run-off from natural greenfield areas contributes very little pollution and sediment to rivers and for most rainfall events direct run-off from greenfield sites to rivers does not take place as rainfall percolates into the ground. By contrast, urban run-off, when drained by pipe systems, results in run-off from virtually every rainfall event with high levels of pollution, particularly in the first phase of run-off, with little rainfall percolating to the ground. To prevent this happening, Criterion 1 requires that interception storage and/or treatment storage is provided, thereby replicating the run-off characteristics of the pre-development greenfield site.

2.4.6.2 Criterion 3 GDSDS – Site Flooding

The GDSDS requires that no flooding should occur on site for storms up to and including the 1 in 30-year event. The pipe network and the attenuation storage volumes should, therefore, be checked for such storms to ensure that no site flooding occurs although partial surcharging of the system is allowed if it does not threaten to flood.

For the 1 in 100-year event, the pipe network can fully surcharge and cause site flooding, but the top water level due to any such flooding must be at least 500mm below any vulnerable internal floor levels, and the flood waters should be contained within the site. In addition, the top water level in any attenuation device during the 100-year storm must be at least 500mm below any vulnerable internal floor levels.

Surface water drains have been oversized to ensure the following:

- The system does not surcharge for the 1-year event
- The system surcharges but does not flood for the 30-year event.
- The system surcharges but does not flood for the 100-year event.

Detailed modelling of the surface water sewer network has been carried out using Causeway Flow software to confirm the above criteria is adequately met. The outputs are appended to this report.

Basements or under croft car parks are covered by podium slabs and do not receive direct rainfall. There will be limited outflow from these areas (rainfall coming off cars & rainwater coming in through car park vents). They are drained by a separate system that outfalls to a petrol interceptor buried below the ground floor slab. From there, the car park drainage is pumped to the nearest foul water manhole, in accordance with DLR requirements, and is not at risk of any backflow from the surface water system during storm conditions. GDSDS Criterion 3 is therefore complied with.

2.4.6.3 Criterion 2 & Criterion 4 GDSDS – River Regime and Flood Protection

Regardless of the rainfall event, unchecked run-off from the developed site through traditional pipe networks will discharge into receiving waters at rates that are an order of magnitude greater than that prior to development. This can cause flash flow in the outfall river / stream that can cause scour, erosion & downstream flooding. Attenuation storage is provided to prevent this occurring by limiting the rate of run-off to that which took place from the pre-development greenfield site. In practice, the rate of run-off needs to be appropriately low for most rainfall events, and attenuation storage volumes should be provided for the 1 and 100-year storm event + 20% for climate change. The rate of outflow from such storage should be controlled so that it does not exceed the greenfield run-off rate of QBAR, which can be factored upwards by factors appropriate to the various return periods (given in the Flood Studies Report) if long term storage is provided. Notwithstanding that significant long-term storage volume provision and so growth factors will not be applied to QBAR when calculating the attenuation storage volume required.

Obar for the site has been calculated in accordance with the IH124 method as 31.86 l/s, based on the drained areas of the site. As the surface runoff flow rate discharged from the site does not exceed Qbar, there is no requirement for long-term storage to limit the impact on the receiving watercourse. The calculated QBar for Catchment A = 6.9 l/s, for Catchment B1 = 19.95 l/s and for Catchment B2 = 4.9l/s. Please refer to section 2.3.2 of this report for the Qbar calculation.

Criterion 4 is intended to prevent flooding of the receiving system / watercourse by either.

- limiting the volume of run-off to the pre-development greenfield volume using 'long-term storage' (Option 1) or by
- limiting the rate of run-off for the 1 in 100-year storm to QBAR without applying growth factors using 'extended attenuation storage' (Option 2).

Significant long-term storage will be provided in the form of interception storage. This does not, however, equate to full long term storage volumes and it is not feasible to provide additional storage areas elsewhere on site to achieve the required volume.

Option (2) has therefore been used to comply with Criterion 4 and an attenuation volume will be provided in the proposed attenuation tank to limit the rate of discharge in the 1 in 100-year storm +20% event to QBAR without growth factors applied.

Refer to Appendix 6 for surface water network design calculations.

2.4.7 SuDS CIRIA Pillars of Design

2.4.7.1 Water Quantity

The "Water Quantity" design objective is to ensure that the surface water runoff from a developed site does not have a detrimental impact on people, property or the environment, it is important to control:

- How fast the runoff is discharged from the site (ie the peak runoff rate) and
- How much runoff is discharged from the site (ie the runoff volume)

2.4.7.2 Water Quality

The "Water Quality" design objective seeks to ensure the surface water runoff from the site does not compromise the groundwater or surrounding water courses relating to the site.

A pollutant analysis was performed in 2.3.8 of this report. Pollution hazard levels on site are 'low' or 'very low' and the SuDS treatment trains on site will reduce pollution levels in discharging surface water to acceptable levels.

2.4.7.3 Amenity

The "Amenity" design objective aims to deliver attractive, pleasant, useful and above all liveable urban environments. SuDS measures should be designed to replicate the existing natural environment and blend in with the urban development.

BMCE have worked closely with the landscaping architect throughout the SuDS strategy design process to ensure that the measures which have been suggested and incorporated have a high sense of public use. Throughout the site, there are podium green roofs, bio-retention areas, tree pits and a detention basin.

2.4.7.4 Biodiversity

The encouragement of biodiverse environments within urban environments is incredibly important. The SuDS measures must not only replicate the pre-development surface water runoff systems and treatment for rainfall, but they must only replicate the existing habitats predevelopment.

By incorporating large landscaped areas in all areas, green roofs throughout the site and the bioretention areas, biodiversity on site is promoted. In addition, a large number of mature trees have been retained on site.

2.4.8 SuDS Conclusion

This section of the report has comprehensively discussed the various SuDS measures which can be applied to the site and then selected the applicable devices, based on the site layout. A wide range of measures have been employed. A pollutant analysis and a series of SuDS management trains have then been developed based upon these SuDS measures.

Finally, the chosen SuDS measures have been analysed for various rainfall scenarios to ensure that all the SuDS design criteria are met an extensive range of SuDS measures are proposed with extensive coverage of the developed area of the site. These measures will be effective in treating rainfall on the site to meet GDSDS and CIRIA.

2.5 Assessment for Flood Risk due to Potential Blockage of the surface water drainage system on site.

A secondary check has been carried out to assess for flood risk arising from potential blockages in the proposed surface water network. This analysis was carried out using Causeway Flow by modelling the Hydrobrake at half of the Qbar for 50% blockage of the system. The results are appended in Appendix 6 of the report and indicate the flood volumes. Refer to the Site Specific flood risk assessment report for further information.

3. FOUL DRAINAGE SYSTEM

3.1 EXISTING FOUL DRAINAGE SYSTEM

The foul drainage from the existing buildings on site drains to a combined drainage system on site which discharges to the Ø300mm combined sewer on the Dundrum Road. The combined sewer drains in a northerly direction towards the River Dodder.

3.2 PROPOSED FOUL DRAINAGE SYSTEM

Refer to Appendix 2 for existing drainage records & drawing C1021 for additional information.

3.3 PROPOSED FOUL DRAINAGE SYSTEM

The proposed foul drainage system will be designed to take discharges from the new residential units. There is a small amount of commercial/retail space on site. Drainage from any kitchen/canteen facilities will discharge through a grease separator designed in accordance with IS EN 1825 Part 1 and Part 2 and to Irish Water requirements. The foul system will connect to the Irish Water network at the existing 300mm combined sewer in the Dundrum Road surface.

It is calculated that the proposed development will have a total hydraulic loading of 451m³ per day of foul effluent generated during the operational phase of the development. This equates to an average flow of 5.17 litres/second (over a 24-hour period) and a peak flow of 16.06 litres/second. A breakdown of the foul loading calculations is included in Appendix 4.

A Pre-connection Enquiry application was submitted to Irish Water to confirm capacity in the receiving network and a Confirmation of Feasibility letter was obtained on the 23rd of September 2021. The letter included site specific comments. A controlled and limited foul drainage outflow from the site has been requested to limit the impact on the Irish Water receiving system. This has been addressed by the provision of a controlled flow wastewater pumping station on site. Refer to BM drawing nr C1220 and C1221 for details. See Appendix 5 for a copy of the Irish Water Confirmation of Feasibility Letter. An Irish Water Statement of Design Acceptance has been received on the 3rd of March and can be found in Appendix 5.

3.3.1 Residential Flow – 977 no. units

Dry Weather Flow (Daily) Number of Residential Units Population Estimate	= (Population)(Consumption/Capita) + (Infiltration) = 977 = 977 x 2.7 = 2638 persons
Consumption/Capita	= 150 litres / person / day
Infiltration	= 10% (as per App C Section 1.2.4 of CoP for WW Infrastructure)
Average Flow (DWF)	= (977 x 2.7 x 150 x 1.1) = 435 253 litres / day = 5.04 litres/second
Peak Flow	= (Average Flow) × (4.5) = 5.04 x 3 = 15.11 litres/second

3.3.2 Commercial Flow – 3889 m²

Combined Peak flow= 0.952 l/sTotal Average Flow= 0.135 l/sPlease refer to Appendix 4 for the breakdown of calculations.

3.3.3 Foul Network Design

The proposed pipe network has been designed in accordance with the relevant requirements of the Irish Water Code of Practice for Wastewater Infrastructure.

The proposed foul drainage network comprises of a series of 150mm, 225mm and 300mm diameter pipes, designed for a minimum velocity of 0.75m/s (self-cleansing) and maximum velocity of 3.0m/s. A pipe friction coefficient of 1.5mm has been assumed.

Each residential block is serviced by 225mm diameter (SN8 uPVC) branch connections in accordance with the Irish Water Code of Practice for Wastewater Infrastructure. It is noted the proposed foul outfall pipe is 300mm diameter pipe at 1:100 minimum fall which has a capacity of approximately 100 I/s and is deemed adequate for the peak foul flows anticipated.

Refer to BMCE drawings C1021 for layout of the proposed foul drainage.

4. WATER SUPPLY

4.1 EXISTING WATERMAIN INFRASTRUCTURE

There is an existing 9-inch public watermain in Dundrum Road. The existing buildings on site are serviced from this main. This watermain is to be upgraded to a ø250mm HDPE pipe, to Irish Water requirements, to cater for the development. This has been set out in the specific comments in the Irish Water confirmation of feasibility letter of the 23rd of September 2021.

Refer to Appendix 2 for details of the IW / DCC drainage and watermain records for the area.

All of the existing watermains on site will be decommissioned and grubbed up as part of the new proposed development.

4.2 PROPOSED WATERMAINS

The proposed development will be connected to the new Ø250mm public watermain in the Dundrum Road.

The proposed watermain system through the site will vary between 250mm diameter, 200 diameter, 150mm diameter and 100mm diameter – as shown on Barrett Mahony drawing C1040.

The peak flow demand during the operational phase of the development will be 26.6 litres/second, equivalent to an average daily demand of 410m³. The installation of low flow fittings for the development will reduce the demand on the existing water supply network.

A Pre-connection Enquiry application was submitted to Irish Water to confirm capacity in the network and a Confirmation of Feasibility Letter was obtained. See Appendix 5 for a copy of the Irish Water Confirmation of the Feasibility letter. An Irish Water Statement of Design Acceptance has been received on the 3rd of March and can be found in Appendix 5.

4.2.1 Residential Demand – 977 no. units

Average Daily Demand	= (Population)(Consumption/Capita)
Number of Residential Units	= 977
Population Estimate	= 977 x 2.7 = 2638 persons
Consumption/Capita	= 150 litres / person / day
Average Daily Demand	= 2 638 x 150
	= 395 700 litres/day
Average Day/Peak Week Demand	= (Average Daily Demand) x 1.25
	= 494 625 litres/day
	= 5.72 litres/second
Peak Demand	= (Average Day/Peak Week Demand) x 5
	= 28.62 litres/second

4.2.2 Commercial Flow – 4350 m²

Combined Peak flow	= 0.980 l/s
Total Average Flow	= 0.196 l/s

Please refer to Appendix 4 for the breakdown of calculations.

4.2.3 Watermain Design

All proposed water ring mains will be PE-80 SDR17 and (100, 150, 200, 250 internal diameter) SDR17, in accordance with Irish Water Standards. Individual houses will have their own connections (25mm O.D. PE pipe MDPE 80 SDR11) to distribution water mains via service connections and meter / boundary boxes. Individual connections are to be installed in accordance with Irish Water Standard Details. All apartment blocks will have their own metered connection with a bulkmeter in accordance with Irish Water requirements.

The proposed water main layout is arranged such that all buildings are a maximum of 46m from a hydrant in accordance with the Department of the Environment's Building Regulations "Technical Guidance Document Part B Fire Safety". Hydrants are to be installed in accordance with Irish Water's Code of Practice and Standard Details. Final positions of hydrants will be agreed as part of the Fire Safety Certificate requirements.

Sluice valves are provided at all junctions and appropriate locations to facilitate isolation of the system. Air valve at high points and scour valves at low points are also provided. Individual houses will accommodate minimum 24-hour water storage (in accordance with the requirements of Irish Water's Code of Practice) and include provision of water conservation measures such as dual flush water cisterns and low flow taps. Apartments will also incorporate 24-hour storage, either in a communal basement storage tank or individual in each apartment.
5. DRAINAGE & WATERMAIN DESIGN TO CATER FOR THE PROPOSED PHASING OF THE DEVELOPMENT

5.1 INTRODUCTION

The number of phases and the make-up of each will be subject to market conditions and commercial considerations at the time. It is currently envisaged that there will be five phased clusters as outlined in Table 5.1 & Figure 5.1 below and that the construction of the phases will partially overlap and run concurrently. Subject to Planning Permission & commercial considerations the construction is expected to run from late-2022 to the near the end of 2028, six and a half years approximately. Completion of the first residential units is anticipated in 2024. The start date may run out in 2023 depending on commercial considerations and potential legal challenges.

Phase	Description	*Approx % of the total Development	Estimated Construction Period (Months
1	Block 10	16%	18
2	Blocks 02	13%	17
3	Blocks 03, 04, & 05 and the walled garden.	38%	20
4	Blocks 06 & 07 and the community park.	28%	23
5	Blocks 08 & 09	5%	10
Total 977 res *Measured by unit	idential units + Other uses. t numbers. **The construction of the clusters overlap.	100%	76**

Table 5.1: Estimated Construction Sequence & Programme

Fig 5.1 Plan View of the Development Showing the Block Layout and Outline Phasing.

Phase 01:

- Block 10: 158 no. apartments including basement car parking and a creche.
- Entrance road from Dundrum Road and pedestrian and cycle paths.
- Second access road off the Dundrum Road.

Phase 02:

- Block 02: 134 no. houses and apartments, including surface car parking, and a medical unit.
- Entrance road and pedestrian and cycle paths.
- Parkland areas and landscaping.

Phase 03:

- Block 03: 161 no. apartments, including surface car parking, retail and amenity units.
- Block 04: 104 no. apartments, including basement car parking.
- Block 05: 118 no. apartments, including surface car parking.
- Installation of the eco corridor and landscaping
- Refurbishment of the walled garden.

Phase 04

- Block 06: 43 no. apartments and a community, art and cultural centre.
- Block 07: 211 no. apartments, including surface car parking, retail and amenity units.
- Installation of the community park.

Phase 05

- Block 08: 25 no. duplex units, including surface car parking.
- Block 09: 23 no. houses, including surface car parking.

A more detailed programme will be developed by the Main Contractor, once appointed, in agreement with the professional design team to reach early agreement on an acceptable construction sequence.

5.2 SURFACE WATER DRAINAGE DESIGN & SUDS FOR THE PHASING

The surface water system has been designed to cater for the proposed phasing as follows:

- Each phase will incorporate SuDS measures and surface water attenuation devices to ensure that each phase is compliant with the GDSDS and that QBar flow rates are not exceeded for the areas drained.
- The three surface water connections from the site will be made as follows:
 - Phase 1: Surface water connection to the sw sewer feeding into the River Slang.
 - Phase 2: Surface water connection to the open channel flow ditch in the north east corner of the site.
 - Phase 3: Surface water connection to the open channel flow ditch in the east of the site.
 - Phases 4 & 5 will tie into the surface water infrastructure laid in the previous phases.
- The Catchment strategy set out in Section 2.3.1 of this report will be adhered to and there will not be any temporary additional flows into another sub-catchment.

5.3 FOUL WATER DRAINAGE DESIGN FOR THE PHASING

The foul water drainage system has been designed to cater for the proposed phasing as follows:

- The controlled outflow wastewater pumping station requested by Irish Water will be installed & commissioned in Phase 1 as will the connection from it to the combined sewer on the Dundrum Road. Phase 1 and subsequent phases will drain into this by gravity.
- Phase 3 incorporates the main ring road which passes through Phase 4. The foul drain serving Phase 3 and discharging to the pumping station will be laid under this road. All phases of the development will therefore be served by their permanent foul drainage lines and temporary connections will not be required.
- Phases 4 & 5 will tie into the foul water infrastructure laid in the previous phases.

5.4 WATER SUPPLY

The water main layout on site has been designed to cater for the proposed phasing on site as follows:

- Phase 1: The connection to the public watermain on the Dundrum Road will be made. Subject to Irish Water requirements the upgrades to the watermain on the Dundrum Road, requested by them, will be made at this stage.
- Phase 2: The looped main in Phase 2 will tie into the Phase 1 main.
- Phase 3: The principal site water main layout will be completed in this phase.
- Phases 4 & 5 will tie into the water main infrastructure laid in the previous phases.

6. TRANSPORT INFRASTRUCTURE

6.1 TRAFFIC IMPACT AND MOBILITY MANAGEMENT

Please refer to the separate reports on these items prepared by ILTP Traffic & Transport Consultants.

6.2 EXISTING ROAD ACCESS

The existing site is served by an access off the Dundrum Road at the north west corner. Refer to Photo 5.1 below.

Photo 5.1 Existing access off the Dundrum Road R117 – Looking South

6.3 PROPOSED ROAD ACCESSES TO THE NEW DEVELOPMENT

The site will be served by two accesses off the Dundrum Road. One access at the existing entrance, adjusted to ensure adequate sightlines. A second access 150m south along the Dundrum Road, close to the Annaville housing estate. These junctions are shown on the Barrett Mahony drawings accompanying the application. Refer to drawing numbers C1000, C1001, C1002 & C1003. The sightlines at both junctions will be in excess of 45metres on a 2.4m set back dimension, in accordance with DMURS.

6.4 INTERNAL ROAD NETWORK

Various types of roads are incorporated into the development as set out on Barrett Mahony road plans & typical road cross-section drawings. Typically, the road section is a 5.5m wide kerbed road to accommodate two-way traffic. In some locations 2.0m wide footpaths are provided on either

side or one side. In other locations to protect trees, the footpath is set back from the road. Traffic calming is achieved by non-linear horizontal alignments & raised table pedestrian crossings.

A 7.2m wide shared surface is used on the east side of the development, in the less trafficked area, locations to achieve traffic calming in accordance with DMURS requirements. A 30kph speed limit will apply inside the development.

Vehicle tracking drawings for a fire tender and refuse truck across the site road layout has been prepared by Barrett Mahony as part of the planning package.

6.5 PEDESTRIAN ACCESS

Pedestrian access to the site will be via the two road accesses referred to above. In addition, there will be pedestrian access to the existing public footpath at the northwest corner of the site, adjacent to traffic light controlled pedestrian crossing here.

Pedestrian permeability through the site will be enhanced by new pedestrian accesses to Annaville Park in the southwest of the site and to Rosemount Green in the south of the site. Refer to the ILTP reports and Architect's drawings for further information.

Fig 5.1 Typical Road Sections in the development taken from BM drg. No C1012

6.6 CYCLISTS

Cycle parking will be provided throughout the site as set out on the Architect's/Landscape Architect's plan & in the ILTP traffic reports. Cycle path locations in the site are shown on the Barrett Mahony Roads Layout drawings C1000 and C1001 and on the Architect's/Landscape Architect's site layout plans. The cycle paths, 1.80m wide typical each way, are kept separate from roads where possible to enhance the safety of cyclists. Cyclists will share the same accesses to the site as pedestrians, as set out in the preceding section above.

6.7 DMURS COMPLIANCE

A DMURS Compatibility Statement has been completed by ILTP Traffic & Transport Consultants and is submitted under separate cover with this planning application.

6.8 STAGE 1 ROAD SAFETY AUDIT

A Stage 1 Road Safety Audit has been carried out by ILTP Traffic & Transport Consultants and is submitted under separate cover with this planning application and examines the road safety implication of the proposed development.

It is noted that all recommendations of the Stage 1 Road Safety Audit have been accepted by the Design Team and incorporated into the design proposals.

6.9 STAGE 1 QUALITY AUDIT

A Stage 1 Quality Audit has been carried out by ILTP Traffic & Transport Consultants and is submitted under separate cover with this planning application, and is a third party audit of access, walking and cycling infrastructure proposals.

It is noted that all recommendations of the Quality Audit have been accepted by the Design Team and incorporated into the design proposals.

The Quality Audit process has been integral to the project, ensuring a considerate and coordinated multidisciplinary approach to the overall development design proposals, and resulting in an attractive, safe and DMURS compliant urban residential environment.

Appendix 1 Site Investigation Report

S.I. Ltd Contract No: 5811

Client:Land Development AgencyEngineer:Barrett MahonyContractor:Site Investigations Ltd

Dundrum Central Development Dundrum, Dublin 14 Site Investigation Report

Prepared by:

Setch

Stephen Letch

Issue Date:	09/11/2021
Status	Final
Revision	1

.....

Contents:

Page No.

1.	Introduction	1
2.	Site Location	1
3.	Fieldwork	1
4.	Laboratory Testing	4
5.	Ground Conditions	4
6.	Recommendations and Conclusions	5

Appendices:

- 1. Cable Percussive Borehole Logs
- 2. Trial Pit Logs and Photographs
- 3. Soakaway Test Results and Photographs
- 4. Foundation Pit Logs
- 5. Slit Trench Logs
- 6. Geotechnical Laboratory Test Results
- 7. Environmental Laboratory Test Results
- 8. Waste Classification Report
- 9. Survey Data

1. Introduction

On the instructions of Barrett Mahony, Site Investigations Ltd (SIL) was appointed to complete a ground investigation at the former Central Mental Hospital site in Dundrum, Dublin 14. The investigation was for a residential development on the site and was completed on behalf of the Client, Land Development Agency. Due to supervision issues, the fieldworks were initially started in March 2021 and then postponed until August and completed in September 2021.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Site Location

The site is located in to the north of Dundrum town centre, which is to the south of Dublin city centre. The first map below shows the location of the site to the south of the city centre and the second map shows the location of the site to the north of Dundrum town centre.

3. Fieldwork

The fieldworks comprised a programme of cable percussive boreholes, trial pits, soakaway tests, foundation pits, slit trenches and California Bearing Ratio tests. All fieldwork was carried out in accordance with BS 5930:2015, Engineers Ireland GI Specification and Related Document 2nd Edition 2016 and Eurocode 7: Geotechnical Design.

The fieldworks comprised of the following:

- 16 No. cable percussive boreholes
- 35 No. trial pits
- 4 No. soakaway tests
- 7 No. foundation inspection pits
- 3 No. slit trenches
- 6 No. California Bearing Ratio tests

3.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 16 No. locations using a Dando 150 rig and constructed 200mm diameter boreholes. Hand dug inspection pits were excavated to check for underground services at each borehole location. The boreholes terminated at depths ranging from 4.50mbgl (BH12) to 8.60mbgl (BH11). It was not possible to collect undisturbed samples due to the granular soils encountered so bulk disturbed samples were recovered at regular intervals.

To test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450mm and the cone is driven 150mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300mm and the blows recorded to report the N-Value. The report shows the N-Value with the 75mm incremental blows listed in brackets (e.g., BH01 at 1.00mbgl where N=12-(2,2/2,4,3,3)). Where refusal of 50 blows across the test zone was encountered was achieved during testing, the penetration depth is also reported (e.g., BH01 at 7.60mbgl where N=50-(25 for 5mm/50 for 5mm)).

At 5 No. locations, standpipes to allow for long term groundwater monitoring were installed. These were slotted pipes with a gravel response zone to allow for the groundwater to equalise within the standpipe.

The logs are presented in Appendix 1.

3.2. Trial Pits

35 No. trial pits were excavated using a wheeled excavator with TP21 cancelled due to access issues. The pits were logged and photographed by SIL geotechnical engineer and representative disturbed bulk samples were recovered as the pits were excavated, which were returned to the laboratory for geotechnical testing.

The trial pit logs and photographs are presented in Appendix 2.

3.3. Soakaway Tests

At 4 No. locations, soakaway tests were completed and logged by SIL geotechnical engineer. BRE Special Digest 365 stipulates that the pit should be filled three times and that the final cycle is used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall at a steady rate, then the test is deemed to have failed and the area is unsuitable for storm water drainage.

The soakaway test results and photographs are presented in Appendix 3.

3.4. Foundation Pits

At seven locations, foundation pits were excavated to investigate the depths of the foundations of the existing structure. FI02 was cancelled due to issues accessing the proposed location. The pits included hand excavating around the foundation to measure the depth to the top, extension out from the wall and the thickness of the foundation. The pits were then photographed, backfilled with arisings and reinstated.

The foundation pit logs are presented in Appendix 4.

3.5. Slit Trenches

Slit trenching was completed at 3 No. locations by hand digging with machine assistance where possible. The trenches were completed to check for any underground services at the selected locations. The trenches were logged and photographed before they were backfilled with the arisings.

The slit trench logs with photographs are presented in Appendix 5.

3.6. California Bearing Ratio Tests

At 6 No. locations, undisturbed cylindrical mould samples were recovered to complete California Bearing Ratio tests in the laboratory. The results facilitate the designing of the access roads and associated areas and are completed to BS1377: 1990: Part 4, Clause 7 'Determination of California Bearing Ratio'. The results are presented as part of Appendix 6 with the geotechnical laboratory test data.

3.7. Surveying

Following completion of all the fieldworks, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and along with a site plan in Appendix 9.

4. Laboratory Testing

Geotechnical laboratory testing was completed on representative soil samples in accordance with BS 1377 (1990). Testing included:

- 65 No. Moisture contents
- 12 No. Atterberg limits
- 25 No. Particle size gradings with 12 No. hydrometers
- 3 No. shear boxes
- 10 No. pH and sulphate content

Environmental testing was completed by Eurofins Chemtest Ltd and this allows for a Waste Classification report to be produced. The environmental testing consists of the following:

• 70 No. Suite I analysis

The geotechnical laboratory test results are presented in Appendix 6 with the environmental test results and Waste Classification report in Appendix 7 and 8 respectively.

5. Ground Conditions

5.1. MADE GROUND

MADE GROUND was encountered at most locations across the site generally to 1.10mbgl or shallower although it did extend deeper at 6 No. locations with TP02 recording fill material to 2.20mbgl. The fill material is dominated by consists of granular sand and gravel fill although some cohesive clay soils were also recorded. The foreign material recorded in these soils include concrete, timber, tarmacadam, pottery, bone, ash, slag, plastic bags and red brick fragments.

5.2. Overburden

The natural ground conditions are consistent with cohesive soils encountered across the site. This includes brown and brown grey overlying black slightly sandy gravelly silty CLAY with high cobble and low boulder content soils. The black CLAY was recorded at depths ranging from 1.80mbgl to 3.20mbgl. At the trial pit locations, some layers of granular GRAVEL were also recorded towards the north of the site. The boreholes terminated at depths ranging from 4.50mbgl to 8.60mbgl on boulder obstructions.

The SPT N-values in the natural ground at 1.00mbgl range from 4 to 19 indicating soft to stiff soils. The N-values then increase to 11 to 33 at 2.00mbgl and steadily increase with depth as the boreholes progress.

Laboratory tests of the shallow cohesive soils confirm that CLAY soils dominate the site with low to intermediate plasticity indexes of 14% to 16% recorded. The particle size distribution curves were poorly sorted straight-line curves with 22% to 53% fines content.

5.3. Groundwater

Groundwater details in the boreholes and trial pits during the fieldworks are noted on the logs in Appendix 1 and 2. Groundwater ingresses were recorded in 13 No. boreholes with initial water strikes between 0.80mbgl and 3.20mbgl. At four of the boreholes, BH11, BH13, BH15 and BH16, the initial strike was sealed off by the borehole casings and then groundwater reentered the borehole between 3.50mbgl and 4.50mbgl.

Groundwater was recorded in 12 of the trial pits at depths ranging from 1.30mbgl to 2.10mbgl with ingress rates recorded as seepages to slow.

6. Recommendations and Conclusions

Please note the following caveats:

The recommendations given, and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should be specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

6.1. Shallow Foundations

Due to the unknown depth of foundation and no longer-term groundwater information, this analysis assumes the groundwater will not influence the construction or performance of these foundations.

As stated previously, man-made soils were recorded across the site to a maximum depth of 2.20mbgl. SIL do not recommend that narrow shallow foundations are placed on fill material due to the unknown compaction methods used during laying of man-made material. This unknown could result in softer spots and differential settlement once construction is completed. If shallow foundations are to be used and man-made soils are encountered below foundation level, then the soil should be removed and replaced with engineered fill which is compacted to the required standard.

Beneath the fill material the boreholes recorded cohesive CLAY soils. Using a correlation proposed by Stroud and Butler, the SPT N-values and plasticity indices can be used to calculate the undrained shear strength. With the low to intermediate plasticity indexes recorded in the laboratory for the soils encountered on site, this correlation is $C_u=6N$. This value can then be used to calculate the ultimate bearing capacity (UBC), and finally, a factor of safety is applied to get the allowable bearing capacity, with a factor of 3 chosen for this project.

BH:		1.2	:0m		2.00m		3.00m					
	SPT	Cu	UBC	ABC	SPT	Cu	UBC	ABC	SPT	Cu	UBC	ABC
01	-	-	-	-	33	198	1045	350	32	192	1033	345
02	7	42	235	80	13	78	434	145	21	126	695	230
03	-	-	-	-	18	108	587	195	29	174	942	315
04	-	-	-	-	20	120	648	215	30	180	972	325
05	15	90	480	160	14	84	465	155	20	120	666	220
06	7	42	235	80	17	102	556	185	21	126	695	230
07	-	-	-	-	22	132	710	235	24	144	788	265
08	11	66	358	120	14	84	465	155	31	156	1000	335
09	19	114	603	200	19	114	617	205	31	156	1000	335
10	14	84	450	150	31	156	985	330	31	156	1000	335
11	10	60	328	110	19	114	617	205	35	210	1125	375
12	4	24	144	50	17	102	556	185	22	132	727	245
13	11	66	358	120	11	66	372	125	26	156	850	285
14	11	66	358	120	25	150	800	265	30	180	972	325
15	9	54	297	100	15	90	495	165	32	192	1033	345
16	14	84	450	150	33	198	1045	350	39	234	1247	415

All values are in kN/m².

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

- Foundations are to be constructed on a level formation of uniform material type (described above).
- The bulk unit weight of the material in this stratum has a minimum density of 19kN/m³.
- All bearing capacity calculations allow for a settlement of 25mm.

The trial pit walls remained stable during excavation. However, it would still be recommended that all excavations should be checked immediately and regular inspection of temporary excavations should be completed during construction to ensure that all slopes are stable. Temporary support should be used on any excavation that will be left open for an extended period.

6.2. Groundwater

The caveats below relating to interpretation of groundwater levels should be noted:

There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall, nearby construction and tides.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously, groundwater was recorded in 13 No. boreholes and 12 No. trial pits during the fieldworks. There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. Based on this information at the exploratory hole locations to date, it is considered likely that any shallow ingress (less than 2.00mbgl) into excavations of the CLAY will be slow to medium. If granular soils are encountered in shallow excavations, then the possibility of water ingressing into an excavation increases.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

6.3. Soakaway Test

SA02 and SA03 passed the BRE specification with the water draining from the trial pit. SA02 was completed in fill material, which may not have been compacted as much as the natural soils and SA03 was completed in granular SAND and GRAVEL soils. The f-values were calculated as 7.36×10^{-5} m/s and 2.20×10^{-4} m/s. It would be recommended that any soakaway is placed in the natural granular soils.

The soakaway tests, SA01 and SA04, failed the specification as the water level did not fall sufficiently enough to complete the test. The BRE Digest stipulates that the pit should half empty within 24hrs, and extrapolation indicates this condition would not be satisfied. The tests were terminated at the end of the first (of a possible three) fill/empty cycle since further testing would give even slower fall rates due to increased soil saturation.

6.4. Pavement Design

The CBR test results in Appendix 6 indicate CBR values ranging from 6.4% to 8.9%.

The CBR samples were recovered at 0.40mbgl and inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

6.5. Contamination

Environmental testing was carried out on seventy samples from the investigation and the results are shown in Appendix 7. For material to be removed from site, Suite I testing was carried out to determine if the material is hazardous or non-hazardous and then the leachate results were compared with the published waste acceptance limits of BS EN 12457-2 to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill.

The Waste Classification report in Appendix 8, created using HazWasteOnline[™] software, shows that the material tested can be classified as non-hazardous material.

Following this analysis of the solid test results, the leachate disposal suite results showed 36 No. samples remained within the Inert waste thresholds. 23 No. samples recorded determinands that exceed the Inert threshold but remain below the non-hazardous waste landfill levels whereas 11 samples exceeded these upper levels. It would be recommended that an Environmental Engineer is consulted prior to any earthworks commencing on site.

Seventy samples were tested for analysis but it cannot be discounted that any localised contamination may have been missed. Any MADE GROUND excavated on site should be stockpiled separately to natural soils to avoid any potential cross contamination of the soils. Additional testing of these soils may be requested by the individual landfill before acceptance and a testing regime designed by an environmental engineer would be recommended to satisfy the landfill.

6.6. Aggressive Ground Conditions

The chemical test results in Appendix 6 indicate a general pH value between 7.32 and 8.11, which is close to neutral and below the level of 9, therefore no special precautions are required.

The maximum value obtained for water soluble sulphate was 127mg/l as SO₃. The BRE Special Digest 1:2005 – '*Concrete in Aggressive Ground*' guidelines require SO₄ values and after conversion (SO₄ = SO₃ x 1.2), the maximum value of 152mg/l shows Class 1 conditions and no special precautions are required.

Appendix 2 Existing Services

Windy Arbour

Print Date: 23/04/2020

Printed by: Irish Water

1. No part of this drawing may be reproduced or transmitted in any form or stored in any retrieval system of any nature without the written permission of Irish Wateras copyrightholder except as agreed for use on the project for which the document was originally issued.

2. Whilst every care has been taken in its compilation, Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other worksbeing carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

Reproduced from the Ordnance Survey Of Ireland by Permission of the Government.

"Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and transmission network ("the Information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage including, without limitation, direct, indirect, special, incidental, punitive or consequential loss including loss of profits, arising out of or in connection with the use of the information

NOTE: DIAL BEFORE YOU DIG Phone: 1850 427 747 or e-mail dig@gasnetworks.ie - The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of gas distribution and transmission network must be completed in accordance with the current edition of the Health & Safety Authority publication, Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (1890 28 93 89) or can be downloaded free of charge at www.hsa.ie."

> Sewer Foul Combined Network Storm Water Network Waste Water Treatment Plant Waste Water Pump station Sewer Mains Irish Water ---- Gravity - Combined ---- Gravity - Foul ---- Gravity - Unknown Pumping - Combined Foul Pumping - Foul Pumping - Unknown Syphon - Combined Syphon - Foul Overflow Sewer Mains Private Gravity - Combined Gravity - Foul - Gravity - Unknown ➡ Pumping - Combined Standard CP Catchpit Bifurcation Hatchbox 🖕 Lamphole Hydrobrake Other; Unknown Discharge Type -) Outfall Overflow Soakaway Standard Outlet ^o⊺ⁱ^E ^R Other; Unknown Cleanout Type Rodding Eye O Flushing Structure ^o[™]^{He}^ROther; Unknown Sewer Inlets CP Catchpit Gully Standard ^o[™] [■] [■] [■] Other; Unknown Sewer Fittings Vent/Col

Surface Water Mains ----- Surface Gravity Mains

- Surface Gravity Mains Private Surface Water Pressurised Mains
- Surface Water Pressurised Mains Private
- Inlet Type
- Gully Standard
- Other; Unknowr
- Storm Manholes Standard
- Backdrop
- Cascade
- CP Catchpit
- O Bifurcation
- [[#]] Hatchbox
- Lamphole
- ▲ Hydrobrake
- Other; Unknown
- --- Storm Culverts Storm Clean Outs
- Stormwater Chambers
- Discharge Type
- -) Outfall
- Overflow
- 🍯 Soakaway
- o T H ∈ R Other; Unknown
- Gas Networks Ireland
- ----- Transmission High Pressure Gasline --- Distribution Medium Pressure Gasline
- Distribution Low Pressure Gasline
- ESB Networks
- ESB HV Lines

- ESB MVLV Lines
- -- MV Overhead Single Phase
- -- LV Overhead Single Phase
- Abandoned
- Non Service Categories
- Proposed
- Under Construction Out of Service
- Decommissioned
- Water Non Service Assets
- Water Point Feature --- Water Pipe
- Water Structure
- Waste Non Service Assets
- X Waste Point Feature ---- Sewer
- Waste Structure

^o[™]≝^{E R} Other; Unknown

Pumping - Foul = Pumping - Unknown Syphon - Combined Svphon - Foul

- Overflow
- ----- Sewer Casings
- Sewer Manholes
- O Backdrop
- Cascade

Print Date: 01/05/2020

Printed by:Irish Water

1. No part of this drawing may be reproduced or transmitted in any form or stored in any retrieval system of any nature without the written permission of Irish Wateras copyright holder except as agreed for use on the ject for which the document was originally issued

2. Whilst every care has been taken in its compilation. Irish Water gives this information as to the osition of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoeve rising from any errors or omissions. This information should not be relied upon in the event of excavations or any other worksbeing carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated

© Copyright Irish Water

Reproduced from the Ordnance Survey Of Ireland by Permission of the Government. License No. 3-3-34

"Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and transmission network ("the Information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage including, without limitation, direct, special, incidental, punitive or consequential loss including loss of profits, arising out of or in connection with the use of the information

(including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone: 1850 427 747 or e-mail dig@gasnetworks.ie - The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI regas. All work in the vicinity of gas distribution and transmission network must be completed in accordance with the current edition of the Health & Safety Authority publication, 'Code of Practice For Avoiding Danger From Underground Services' which is available from the

Health and Safety Authority (1890 28 93 89) or can be down loaded free of charge at www.hsa.ie. Water Distribution Network Sewer Foul Combined Network Storm Water Network Waste Water Treatment Plant Surface Water Mains - Surface Gravity Mains Water Pump Station ▲ Waste Water Pump station - Surface Gravity Mains Private Sewer Mains Irish Water ☐/▼ Storage Cell/Towe Surface Water Pressurised Mains Dosing Point - Gravity - Combined Surface Water Pressurised Mains Priv ----- Gravity - Foul Meter Station Inlet Type - Gravity - Unknow Abstraction Poin Gully = Pumping - Combined Pumping - Foul Standard Telemetry Kios Other: Unknown Pumping - Unknowr Reservoir Syphon - Combined Syphon - Foul Storm Manholes Potable Standard Raw Wate Backdrop Overflow Water Distribution Sewer Mains Private Cascade Irish Water Catchpit Gravity - Combined -- Private O Bifurcation Gravity - Foul Trunk Water Main [보] Hatchbox - Gravity - Unknow Irish Wate Pumping - Combined Pumping - Foul Lamphole Private Hydrobrake Vater Lateral Lines = Pumping - Unknown Other: Unknown Syphon - Foul Irish Water --- Storm Culverts – Non IW Storm Clean Outs Water Casings Overflow Stormwater Chambers --- Water Abandoned Line Discharge Type Boundary Meter -) Outfall Bulk/Check Mete Sewer Manholes Overflow Group Scheme Standard Soakaway Source Meter O Backdrop Waste Meter oTäEROther: Unknowr Cascade Catchpit Gas Networks Ireland Unknown Meter ; Other Me Mon-Return Bifurcation Transmission High Pressure Gasline --- Distribution Medium Pressure Gasline 📂 PRV Hatchbox ----- Distribution Low Pressure Gasline ≥ PSV ど Lamphole ESB Networks Sluice Line Valve Open/Closed Hydrobrake ESB HV Lines Rutterfly Line Valve Open/Closed Other; Unknow HV Underground Sluice Boundary Valve Open/Closed Discharge Type HV Overhead HV Abandoned Butterfly Boundary Valve Open/Closed Outfall Scour Valves Overflow ESB MVLV Lines Single Air Control Valve Soakaway Double Air Control Valve -- MV Overhead Single Phase Standard Outlet 8 Water Stop Valves "ë[∎] Other; Unknowr --- LV Overhead Single Phase Water Service Connection Cleanout Type ----- MVLV Underground Water Distribution Chambers Rodding Eye - Abandoned Water Network Junctions O Flushing Structure Non Service Categories Pressure Monitoring Point Other; Unknow Proposed 🕂 Fire Hydrant Sewer Inlets Under Construction Fire Hydrant/Washou Out of Service Catchpit Gully
 Standard Nater Fittings Decommissioned Water Non Service Assets L Cap ^o[™]^{≝ R} Other: Unknov Water Point Feature - Water Pipe 🚢 Тар Sewer Fittings Other Fittings Water Structure Vent/Col Waste Non Service Assets oTHER Other; Unkno Waste Point Feature Sewer
 Waste Structure

Windy Arbour - East1

Water Treatment Plan

de Waste Water Treatment Plant → Outfall - Double Air Control Valve Water Stop Valv

Surface Water Mains Surface Gravity I Overflow

Inlet Type

Gully

Standard

Standard

O Backdrop

IIII Cascade

🕒 Catchpit

O Bifurcation

FH Hatchbox

Lamphole

Other: Unknown

Surface Water Pressurised Mains

Transmission High Pressure Gasline

roject for which the document was originally issued

T Storage Cell/Tower

- Dosing Point
- Meter Station
- Abstraction Point

Telemetry Kiosk

Reservoir

- Potable
- Raw Water

Water Distribution Mains

- Irish Water - - Private
- Trunk Water Mains
- Irish Wa
- Private

Water Lateral Lines

- Irish Water - Non IW
- Water Casings
- --- Water Abandoned Lines
- M Boundary Meter
- M Bulk/Check Meter
- M Group Scheme
- M Source Meter
- M Waste Meter
- M Unknown Meter ; Other Meter
- Mon-Return
- 炉 PRV
- 阿 PSV
- Sluice Line Valve Open/Closed
- Butterfly Line Valve Open/Closed
- Sluice Boundary Valve Open/Closed
- Butterfly Boundary Valve Open/Closed
- ★ Scour Valves

 Water Service Connections Sewer Mains Irish Water Water Distribution Chambers
Gravity - Combined
Water Network Junctions
Gravity - Foul ---- Gravity - Unknown Pressure Monitoring Point Pumping - Combined 🕂 Fire Hydrant Pumping - Foul Pumping - Unknown ●FH Fire Hydrant/Washout Water Fittings Reducer Other Fittings

🗆 Cap

🗕 Тар

- Syphon Combined Syphon - Foul Overflow Sewer Mains Private
- Gravity Combined Gravity Foul
- Gravity Unknown
- Pumping Combined
- Pumping Foul
- = Pumping Unknown
- Syphon Combined Syphon - Foul
- Overflow
- ------ Sewer Lateral Lines
- Sewer Casings
- Sewer Manholes
- Standard Backdrop
- Cascade
- Catchpit
- Bifurcation
- [Hatchbox
- Lamphole
- Hydrobrake
- Other; Unknowr
- O Flushing Structure T는 R Other; Unknown Storm Manholes Standard Sewer Inlets Catchpit Gully Standard oT is R Other; Unknown Sewer Fittings Vent/Col ^o™[≝]^E^R Other; Unknown

Soakaway

Cleanout Type

^o[™]^{E R} Other; Unknown

Rodding Eye

- Hydrobrake Other; Unknown --- Storm Culverts Storm Clean Outs
 - Stormwater Chambers
 - Discharge Type
 - -) Outfall
 - PP Overflow
- Distribution Me ----- Distribution Low Pressure Gasline Soakaway
 Surface Water Pressurised Mains
 Standard Outlet
 Surface Water Pressurised Mains Private
 ESB Networks
 ESB HV Lines HV Underground ESB MVLV Lines MV Overhead Three Phase MV Overhead Single Phase ----- LV Overhead Three Phase

 - ----- Abandoned

 - Proposed
 - Under Construction

 - ۲ Soakaway
 - ° ™ Unknown
- LV Overhead Single Phase
 MVLV Underground Copyright Irish Water
- Non Service Categories
- Out of Service
- Decommissioned
 - Water Non Service Assets
- Water Point Feature
- --- Water Pipe Water Structure
- Waste Non Service Assets X Waste Point Feature
- Sewer
 Waste Structure

2. W hilst every care has been taken in its compilation, Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can is used available information provided by each code automy in near to than wheth information is well can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, pompleteness or up to date nature of the information provided and does not accept any liability whatsoeve arising from any errors or om issions. This information should not be relied upon in the event of excavations or any other worksbeing carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

Reproduced from the Ordnance Survey Of Ireland by Permission of the Government. . cense No. 3-3-34

Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and ransmission network ("the Information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No lability shall be accepted for any loss or damage n cluding, without limitation, direct, in direct, special, in cidental, punitive or con sequential loss including oss of profits, arising out of or in connection with the use of the information

including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone: 1850 427 747 or e-mail dig@gasnetworks.ie - The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of gas distribution and transmission network must be completed in the superscription of the transmission of the superscription of the superscrip ccordance with the current edition of the Health & Safety Authority publication, Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (1890 28 93 89) or can be down baded free of charge at www.hsa.ie.

Print Date: 01/05/2020

Windy Arbour - East2

🖵 Cap

🚢 Тар

-) Outfall # Waste Water Treatment Plant

Surface Water Mains Surface Gravity Overflow

Inlet Type

Gully

Standard

Standard

O Backdrop

Cascade

O Bifurcation

Hatchbox

Lamphole

Other; Unknown

- Surface Gravity Mains Private

Surface Water Pressurised Mains

Gas Networks Ireland Transmission High Pre roject for which the document was originally issued

→ Storage Cell/Tower

Water Treatment Plan

- Dosing Point
- Meter Station
- Abstraction Point

Telemetry Kiosk

Reservoir

- Potable
- Raw Water

Water Distribution Mains

- Irish Water -- Private
- Trunk Water Mains
- Irish Wate
- Private

Water Lateral Lines

- Irish Water - Non IW
- Water Casings
- --- Water Abandoned Lines
- M Boundary Meter
- M Bulk/Check Meter
- M Group Scheme
- M Source Meter
- M Waste Meter
- M Unknown Meter ; Other Meter
- Mon-Return
- 炉 PRV
- 阿 PSV
- Sluice Line Valve Open/Closed
- Butterfly Line Valve Open/Closed
- Sluice Boundary Valve Open/Closed
- Butterfly Boundary Valve Open/Closed
- ★ Scour Valves

- Water Service Connections Sewer Mains Irish Water Water Distribution Chambers
 Gravity - Combined
 Water Network Junctions
 Gravity - Foul ---- Gravity - Unknown Pressure Monitoring Point Pumping - Combined 🕂 Fire Hydrant Pumping - Foul Pumping - Unknown ●FH Fire Hydrant/Washout Water Fittings Reducer Other Fittings
 - Syphon Combined Syphon - Foul Overflow Sewer Mains Private

 - Gravity Combined Gravity Foul
 - Gravity Unknown
 - Pumping Combined
 - Pumping Foul
 - = Pumping Unknown
 - Syphon Combined ≠ Syphon - Foul
 - Overflow
 - ------ Sewer Lateral Lines
 - Sewer Casings
 - Sewer Manholes
 - Standard O Backdrop
 - Cascade
 - Catchpit
 - Bifurcation
 - [Hatchbox
 - Lamphole

 - Hydrobrake
 - Other; Unknowr
- O Flushing Structure T는 R Other; Unknown Storm Manholes Standard Sewer Inlets Catchpit Gully Standard ^o[™]⁶^{E R} Other; Unknown Sewer Fittings Vent/Col ^o™[≝]^E^R Other; Unknown

🍯 Soakaway

Cleanout Type

OTHER Other: Unknown

Rodding Eye

- Hydrobrake Other; Unknown --- Storm Culverts Storm Clean Outs
 - Stormwater Chambers
 - Discharge Type
 - -) Outfall
 - P Overflow
- ----- Distribution Low Pressure Gasline Soakaway
 Surface Water Pressurised Mains
 Standard Outlet
 Surface Water Pressurised Mains Private
 ESB Networks
 ESB HV Lines HV Underground ESB MVLV Lines MV Overhead Three Phase MV Overhead Single Phase

 - ----- Abandoned

 - Proposed
 - Under Construction

 - Soakaway
 - ° ™ Unknown
- LV Overhead Single Phase
 LV Overhead Single Phase
 MVLV Underground Copyright Irish Water
- Non Service Categories
- Out of Service
- Decommissioned
 - Water Non Service Assets
- Water Point Feature
- --- Water Pipe Water Structure
- Waste Non Service Assets X Waste Point Feature
- Sewer
 Waste Structure

2. W hilst every care has been taken in its compilation, Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on he best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other worksbeing carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

Reproduced from the Ordnance Survey Of Ireland by Permission of the Government. . cense No. 3-3-34

Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and ransmission network ("the Information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or dam age n cluding, without limitation, direct, in direct, special, in cidental, punitive or con sequential loss including oss of profits, arising out of or in connection with the use of the information

Including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone: 1850 427 747 or e-mail dig@gasnetworks.ie - The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of gas distribution and transmission network must be completed in accordance with the current edition of the Health & Safety Authority publication, Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authonity (1890 28 93 89) or can be down loaded free of charge at www.hsa.ie.'

Print Date: 01/05/2020

Windy Arbour - West1

Water Treatment Plan

Double Air Control Valve # Waste Water Treatment Plant

-) Outfall Surface Water Mains Surface Gravity Overflow

Inlet Type

Gully

Standard

Standard

O Backdrop

Cascade

🕒 Catchpit

O Bifurcation

FH Hatchbox

Lamphole

Other: Unknown

- Surface Gravity Mains Private

Surface Water Pressurised Mains

Transmission High Pressure Gasline

project for which the document was originally issued

T Storage Cell/Tower

- Dosing Point
- Meter Station
- Abstraction Point

Telemetry Kiosk

Reservoir

- Potable
- Raw Water

Water Distribution Mains

- Irish Water - - Private
- Trunk Water Mains
- Irish Wa
- Private

Water Lateral Lines

- Irish Water - Non IW
- Water Casings
- --- Water Abandoned Lines
- M Boundary Meter
- M Bulk/Check Meter
- M Group Scheme
- M Source Meter
- M Waste Meter
- M Unknown Meter ; Other Meter
- Mon-Return
- 炉 PRV
- 阿 PSV
- Sluice Line Valve Open/Closed
- Butterfly Line Valve Open/Closed
- Sluice Boundary Valve Open/Closed
- Butterfly Boundary Valve Open/Closed
- ★ Scour Valves

 Water Service Connections Sewer Mains Irish Water Water Distribution Chambers
Gravity - Combined
Water Network Junctions
Gravity - Foul ---- Gravity - Unknown Pressure Monitoring Point Pumping - Combined 🕂 Fire Hydrant Pumping - Foul Pumping - Unknown ●FH Fire Hydrant/Washout Water Fittings Reducer Other Fittings

🖵 Cap

🗕 Тар

- Syphon Combined Syphon - Foul Overflow Sewer Mains Private
- Gravity Combined Gravity Foul
- Gravity Unknown
- Pumping Combined
- Pumping Foul
- = Pumping Unknown
- Syphon Combined Syphon - Foul
- Overflow
- ------ Sewer Lateral Lines
- Sewer Casings
- Sewer Manholes
- Standard O Backdrop
- Cascade
- Catchpit
- Bifurcation
- [Hatchbox
- Lamphole
- L Hydrobrake
- Other; Unknowr
- O Flushing Structure T는 R Other; Unknown Storm Manholes Standard Sewer Inlets Catchpit Gully Standard oT is R Other; Unknown Sewer Fittings Vent/Col ^o™[≝]^E^R Other; Unknown

Soakaway

Cleanout Type

^o[™]^{E R} Other; Unknown

Rodding Eye

- Hydrobrake Other; Unknown --- Storm Culverts Storm Clean Outs
 - Stormwater Chambers
 - Discharge Type
 - -) Outfall
 - PP Overflow
- tribution Me ----- Distribution Low Pressure Gasline Soakaway
 Surface Water Pressurised Mains
 Standard Outlet
 Surface Water Pressurised Mains Private
 ESB Networks
 ESB HV Lines HV Underground ESB MVLV Lines MV Overhead Three Phase MV Overhead Single Phase ----- LV Overhead Three Phase

 - ----- Abandoned

 - Proposed
 - Under Construction

 - ۲ Soakaway
 - o T H ⊂ R Other: Unknown
- LV Overhead Single Phase
 MVLV Underground Copyright Irish Water
- Non Service Categories
- Out of Service
- Decommissioned
 - Water Non Service Assets
- Water Point Feature
- --- Water Pipe Water Structure
- Waste Non Service Assets X Waste Point Feature
- Sewer
 Waste Structure

2. W hilst every care has been taken in its compilation, Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can source to responsibility for and give no guarantees, undertaining or warranties concerning the accuracy, ompleteness or up to date nature of the information provided and does not accept any liability whatsoeve arising from any errors or om issions. This information should not be relied upon in the event of excavations or any other worksbeing carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

Reproduced from the Ordnance Survey Of Ireland by Permission of the Government. . cense No. 3-3-34

Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and ransmission network ("the Information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage n cluding, without limitation, direct, in direct, special, in cidental, punitive or con sequential loss including oss of profits, arising out of or in connection with the use of the information

including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone: 1850 427 747 or e-mail dig@gasnetworks.ie - The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of gas distribution and transmission network must be completed in the superscription of the transmission of the superscription of the superscrip accordance with the current edition of the Health & Safety Authority publication, Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (1890 28 93 89) or can be down boaded free of charge at www.hsa.ie.

Print Date: 01/05/2020

Windy Arbour - West2

T Storage Cell/Tower

- Dosing Point
- Meter Station
- Abstraction Point

Telemetry Kiosk

Reservoir

- Potable
- Raw Water

Water Distribution Mains

- Irish Water - - Private
- Trunk Water Mains
- Irish Wa
- Private

Water Lateral Lines

- Irish Water - Non IW
- Water Casings
- --- Water Abandoned Lines
- M Boundary Meter
- M Bulk/Check Meter
- M Group Scheme
- M Source Meter
- M Waste Meter
- M Unknown Meter ; Other Meter
- Mon-Return
- 炉 PRV
- 阿 PSV
- Sluice Line Valve Open/Closed
- Butterfly Line Valve Open/Closed
- Sluice Boundary Valve Open/Closed
- Butterfly Boundary Valve Open/Closed
- ★ Scour Valves

 Water Service Connections Sewer Mains Irish Water Water Distribution Chambers
Gravity - Combined
Water Network Junctions
Gravity - Foul ---- Gravity - Unknown Pressure Monitoring Point Pumping - Combined 🕂 Fire Hydrant Pumping - Foul Pumping - Unknown ●FH Fire Hydrant/Washout Water Fittings Reducer Other Fittings

🗆 Cap

🗕 Тар

- Syphon Combined Syphon - Foul Overflow Sewer Mains Private
- Gravity Combined Gravity Foul
- Gravity Unknown
- Pumping Combined
- Pumping Foul
- = Pumping Unknown
- Syphon Combined Syphon - Foul
- Overflow
- ------ Sewer Lateral Lines
- Sewer Casings
- Sewer Manholes
- Standard Backdrop
- Cascade
- Catchpit
- Bifurcation
- [Hatchbox
- Lamphole
- L Hydrobrake
- Other; Unknowr
- O Flushing Structure T는 R Other; Unknown Storm Manholes Standard Sewer Inlets Catchpit Gully Standard oT is R Other; Unknown Sewer Fittings Vent/Col ^o™[≝]^E^R Other; Unknown

Overflow

^o[™]^{E R} Other; Unknown

Rodding Eye

Soakaway

Cleanout Type

- Hydrobrake Other; Unknown --- Storm Culverts Storm Clean Outs
 - Stormwater Chambers
 - Discharge Type
 - -) Outfall
 - PP Overflow
- Transmission High Pressure Gasline ----- Distribution Low Pressure Gasline Soakaway
 Surface Water Pressurised Mains
 Standard Outlet
 Surface Water Pressurised Mains Private
 ESB Networks
 ESB HV Lines HV Underground ESB MVLV Lines MV Overhead Three Phase MV Overhead Single Phase ----- LV Overhead Three Phase

 - ----- Abandoned

 - Proposed
 - Under Construction

Surface Gravity

Inlet Type

Gully

Standard

Standard

O Backdrop

IIII Cascade

🕒 Catchpit

O Bifurcation

FH Hatchbox

Lamphole

Other: Unknown

Surface Water Pressurised Mains

- ۲ Soakaway
- o T H ⊂ R Other: Unknown
- LV Overhead Single Phase
 MVLV Underground Copyright Irish Water
- Non Service Categories
- Out of Service
- Decommissioned
 - Water Non Service Assets
- Water Point Feature
- --- Water Pipe Water Structure
- Waste Non Service Assets X Waste Point Feature
- Sewer
 Waste Structure

2. W hilst every care has been taken in its compilation, Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can is used available information provided by each code automy in near to than wheth information is well can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, pompleteness or up to date nature of the information provided and does not accept any liability whatsoeve arising from any errors or om issions. This information should not be relied upon in the event of excavations or any other worksbeing carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

Reproduced from the Ordnance Survey Of Ireland by Permission of the Government. . cense No. 3-3-34

Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and ransmission network ("the Information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No lability shall be accepted for any loss or damage n cluding, without limitation, direct, in direct, special, in cidental, punitive or con sequential loss including oss of profits, arising out of or in connection with the use of the information

including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone: 1850 427 747 or e-mail dig@gasnetworks.ie - The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of gas distribution and transmission network must be completed in the superscription of the transmission of the superscription of the superscrip ccordance with the current edition of the Health & Safety Authority publication, Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (1890 28 93 89) or can be down baded free of charge at www.hsa.ie.

Print Date: 01/05/2020

Appendix 3 LowFlow Flow Logger

Flow Survey Report

Reddy Architecture

HSE, Central Mental Hospital,

Dundrum Rd, Friarland, Dublin 14, D14 W0V6

Document Title:	Pressure Testing Report – IW Network Framework		
Document Reference:	LF-REA-WIN-024-0002		
Version:	V. 1.0	Date:	19 th May 2021
Written By:	Thomas Algier	Title:	Projects Engineer
Approved By:	Charles Dwyer	Title:	Managing Director

Contents

1.	Project		1		
2.	Brief		1		
3.	Training a	and H&S	1		
4.	Methodo	logy	2		
5.	Map and	pictures of installation	3		
5	.1. Inte	ractive Map	3		
5	.2. Pict	ures of installation	4		
	5.2.1.	Pictures of the installation on the 25/02/2021	4		
	5.2.2.	Pictures of the CCTV Survey on the 29/03/2021	6		
	5.2.3.	Pictures of the flow equipment in chamber	7		
6.	Flow and	Rainfall Graph	8		
7.	. Volume of Water and Rainfall per day9				
Арр	Appendix 1 – Daily Totals11				
Арр	endix 2 –	Rainfall Table per day1	3		

1. Project

Title:	Flow Survey Report
Client:	Reddy Architecture
Contact/s:	Email Address: rtobin@reddyarchitecture.com
Site:	HSE, Central Mental Hospital, Dundrum Rd, Friarland, Dublin 14, D14 W0V6
Engineer:	Bob Fagan, Dean McVeight, Angelos Prassas, Mick VanDerMeer
Date:	19 th May 2021

2. Brief

Lowflo were commissioned by Reddy Architecture to carry out a Flow and Load Survey at HSE, Central Mental Hospital in Dundrum from the 25th of February 2021 until the 12th of May 2021. The basis of this report is to produce flow data to determine the volumes of overflow into the receiving environment. 2 flow monitors were installed.

3. Training and H&S

Lowflo strive to provide a safe and healthy work environment; this is facilitated via a consultative approach through the use of toolbox meetings involving employees and the client, with the ultimate aim of working safely to achieve zero harm to both personnel and the environment on all projects.

We achieve this by having a suitably trained, competent and committed workforce who undergo extensive training in all aspects of leak detection, water management, as well as workplace health and safety. Below is a list of qualifications of personnel within the organisation:

٠	Mechanical and Environmental Engineering	•	Hydrant Standpipe Operations
•	Leakage Detection	٠	Leak Correlator Training

- Workplace Health and Safety •
- Safe Pass •
- Manual Handling
- Confined space entry (using BA) .
- Valve Operations .

- Plumbing (City and Guilds)
- Location of Underground services
- Sign, Lighting & Guarding
- Water Hygiene Card

4. Methodology

ISCO 2150 flow modules was used in combination with Area Velocity (AV) probes. The AV probe was fitted to a 2mm stainless steel insert that was subsequently centred and fixed at the inlet or outlet of the flow stream depending on which was more appropriate for the most accurate measurement.

The flowmeter probes are calibrated on an annual basis by the suppliers of the equipment, Water Technology. Onsite checks are performed to ensure the data produced is accurate and reliable. This involves connecting a flowmeter to a laptop with Flowlink software, getting an instantaneous level measurement, then comparing this reading to the measured level in the liquid stream. If there are any differences, there is an option to recalibrate the flowmeter with the true level thereby applying the appropriate adjustment to flow rates.

Alternatively, these adjustments can be made retroactively after the data has been considered. Ragging, stones, grit and any number of unspecified solids can potentially interfere with velocity readings, whereas silting can give rise to false levels.

These checks are performed during the installation of the equipment, and during retrieval of equipment if required.

5. Map and pictures of installation

5.1. Interactive Map

To see the Map online, click <u>HERE</u>:

		Ref: LF-REA-WIN-024-0002
	Flow Survey Report	Version: 1.0
Leak Detection	Date: 19 th May 2021	Date: 19 th May 2021

5.2. Pictures of installation

5.2.1. Pictures of the installation on the 25/02/2021

Table 1: Logger at the Open Drain

Louis		Ref: LF-REA-WIN-024-0002
LOVIIO Water Control &	Flow Survey Report	Version: 1.0
Leak Detection		Date: 19 th May 2021

Table 2: Logger in the Manhole at the gate

		Ref: LF-REA-WIN-024-0002
	Flow Survey Report	Version: 1.0
Leak Detection		Version: 1.0 Date: 19 th May 2021

5.2.2. Pictures of the CCTV Survey on the 29/03/2021

Table 3: CCTV Survey

5.2.3. Pictures of the flow equipment in chamber

Table 4: Equipment in chamber

Love flo		Ref: LF-REA-WIN-024-0002
	Flow Survey Report	Version: 1.0
Leak Detection		Date: 19 th May 2021

6. Flow and Rainfall Graph

See <u>Appendix 1</u> to see the Volume of water per day at the Gate and at the Open Drain, <u>Appendix 2</u> for the rainfall Table per day.

I and la	Flow Survey Report	Ref: LF-REA-WIN-024-0002
LIOVIIO Water Control &		Version: 1.0
Leak Detection		Date: 19 th May 2021

7. Volume of Water and Rainfall per day

Should you have any queries do not hesitate to contact me.

Kind Regards,

Charles Dwyer, Managing Director Lowflo – Water Control & Leak Detection

Intellectual rights: Material contained within this report is the property of Lowflo Ltd. and cannot be used or implemented until full payment is received.

Copyright: Lowflo Ltd. is the copyright holder of this work. Permission must be sought in writing by the client in order to copy, distribute and/or modify this document in any way.

Appendix 1 – Daily Totals

Date	Water at Front Gate (m ³)	Water at Open Drain (m ³)
25/02/2021	82.831	444.83
26/02/2021	201.373	348.588
27/02/2021	121.943	264.047
28/02/2021	72.299	188.342
01/03/2021	60.041	183.823
02/03/2021	65.721	202.802
03/03/2021	73.391	196.748
04/03/2021	76.586	169.619
05/03/2021	80.922	171.575
06/03/2021	68.057	158.815
07/03/2021	70.71	141.219
08/03/2021	69.441	183.439
09/03/2021	75.079	164.061
10/03/2021	72.673	321.621
11/03/2021	70.306	455.826
12/03/2021	74.171	349.12
13/03/2021	68.841	321.3
14/03/2021	71.238	217.66
15/03/2021	69.483	269.157
16/03/2021	74.877	139.046
17/03/2021	73.163	94.402
18/03/2021	70.266	119.363
19/03/2021	74.04	105.485
20/03/2021	8.405	111.847

Date	Water at Front Gate (m ³)	Water at Open Drain (m³)
21/03/2021	Х	118.2
22/03/2021	Х	105.806
23/03/2021	Х	120.407
24/03/2021	Х	147.959
25/03/2021	Х	109.215
26/03/2021	Х	289.262
27/03/2021	Х	188.767
28/03/2021	Х	173.564
29/03/2021	Х	135.245
30/03/2021	Х	133.754
31/03/2021	Х	164.977
01/04/2021	Х	176.101
02/04/2021	Х	75.784
03/04/2021	Х	45.178
04/04/2021	Х	139.759
05/04/2021	Х	223.073
06/04/2021	Х	103.966
07/04/2021	Х	92.971
08/04/2021	181.859	90.024
09/04/2021	264.403	183.996
10/04/2021	352.201	38.759
11/04/2021	279.074	80.809
12/04/2021	161.987	86.361
13/04/2021	156.885	49.093

Date	Water at Front Water at Ope Gate (m ³) Drain (m ³)	
14/04/2021	154.403	46.611
15/04/2021	166.232	40.671
16/04/2021	152.431	42.497
17/04/2021	120.288	48.024
18/04/2021	96.306	54.285
19/04/2021	88.561	61.696
20/04/2021	108.469	84.06
21/04/2021	160.397	48.477
22/04/2021	187.5	55.532
23/04/2021	182.309	51.936
24/04/2021	176.467	50.931
25/04/2021	178.258	43.699
26/04/2021	181.039	63.68
27/04/2021	186.271	98.886
28/04/2021	180.968	118.021
29/04/2021	184.884	108.659
30/04/2021	190.47	105.128
01/05/2021	178.992	98.955
02/05/2021	172.791	110.528
03/05/2021	176.348	199.418
04/05/2021	173.621	104.309
05/05/2021	171.817	139.635
06/05/2021	170.443	123.198
07/05/2021	168.138	113.814

I orrefto		Ref: LF-REA-WIN-024-0002
LIOVIIO Water Control &	Flow Survey Report	Version: 1.0
Leak Detection		Date: 19 th May 2021

Date	Water at Front Gate (m ³)	Water at Open Drain (m³)
08/05/2021	169.942	253.074
09/05/2021	151.19	39.088
10/05/2021	142.282	92.833
11/05/2021	161.687	47.065
12/05/2021	152.285	88.086

Appendix 2 – Rainfall Table per day

Date	Rainfall (mm)
25/02/2021	0
26/02/2021	0
27/02/2021	0
28/02/2021	0
01/03/2021	0
02/03/2021	0
03/03/2021	0
04/03/2021	0
05/03/2021	0
06/03/2021	0
07/03/2021	0
08/03/2021	0
09/03/2021	1
10/03/2021	5
11/03/2021	3.4
12/03/2021	5.2
13/03/2021	1.8
14/03/2021	0.8
15/03/2021	0
16/03/2021	0.6
17/03/2021	0
18/03/2021	0
19/03/2021	0

Date	Rainfall (mm)
20/03/2021	0
21/03/2021	0
22/03/2021	0
23/03/2021	1
24/03/2021	0.2
25/03/2021	0
26/03/2021	2
27/03/2021	0.8
28/03/2021	1
29/03/2021	0
30/03/2021	0
31/03/2021	0
01/04/2021	0
02/04/2021	0
03/04/2021	0
04/04/2021	0
05/04/2021	0
06/04/2021	0.2
07/04/2021	0.2
08/04/2021	0.2
09/04/2021	3.6
10/04/2021	0.4
11/04/2021	2.2

Date	Rainfall (mm)
12/04/2021	1
13/04/2021	0
14/04/2021	0
15/04/2021	0
16/04/2021	0
17/04/2021	0
18/04/2021	0.2
19/04/2021	0
20/04/2021	0.8
21/04/2021	0
22/04/2021	0
23/04/2021	0
24/04/2021	0
25/04/2021	0
26/04/2021	0
27/04/2021	0.6
28/04/2021	0
29/04/2021	1.2
30/04/2021	0
01/05/2021	0
02/05/2021	0
03/05/2021	12.4
04/05/2021	1.2

Date	Rainfall (mm)
05/05/2021	2
06/05/2021	0
07/05/2021	0
08/05/2021	10.8
09/05/2021	0
10/05/2021	2.6
11/05/2021	0.2
12/05/2021	2.4

Appendix 4

Water and Foul Demand Calculations

Phone +353 1 6773200 Email bmce@bmce.ie www.bmce.ie

APPENDIX:	4	DATE: 07/01/2022
CALCULATION:	FOUL WATER FLOW	PAGE: 1
PROJECT TITLE:	DUNDRUM CENTRAL	BY: D.K

	SUMMARY:	Total Peak Flow	Total Average Flow		
A:	Residential	15.113 l/s	5.038 I/s		
B:	Creche	0.344 l/s	0.000 l/s		
C:	Commercial - Retail	0.286 l/s	0.064 l/s		
D:	Commercial - Office	0.322 l/s	0.072 l/s		
		16.065 I/s	5.173 l/s		

A: <u>RESIDENTIAL - 985 UNITS</u>

The foul effluent from the proposed dwellings is calculated as per the Irish Water Code of Practice for Wastewater Infrastructure (July 2020 (rev. 2)) assuming dry weather flow of 150 I/head/day plus a 10% infiltration rate and using the Irish Water assumed average occupancy of 2.7 persons/unit.

No. of Units	=	977						
No. of Occupants	=	977 x	2.7 =	26	37.9			
Daily Flow	=	No. of Occupar	nts x	K D	ory Weathe	er Flow		
Daily Flow	=	2637.9 x	150	Х	1.1 =	435,254 I/c	lay	
Average Flow	= -	Daily Flov Flow Durat	v ion	- =	435,25 24 x 6	4 I/day 0 x 60 =	5.038 l/s	
Peak Flow Peak Flow	=	Average Flow 5.038 I/s	x x	3 3	= 15.11	3 I/s		

B: <u>CRÈCHE</u>

Assume conservatively 75no. children catered for. Assume staff:child ratio of 1:5 on average (based on Schedule 6 Part 1 of Child Care Act 1991 (Early Years Services) Regulations 2016.). Thus assume total of 15no. staff + 75no. children = 85no. persons. As per Irish Water CoP for WW Infrastructure Appendix D, assume flow rate for "Schools - non-residential without a canteen" = 50litres/person/day.

No. of Children	=	75							
Staff:Child Ratio	=	1:5							
Total Population	=	75	+ 15	=	90				
Daily Flow	=	Populati	on	х [Dry W	/eathe	r Flo	W	
Daily Flow	=	90	X S	50	Х	1.1	=	4,950 l/day	
Average Flow		Daily	/ Flow			4,9	950 l	/day _	0 057 L/s
Average 110W	-	Flow D	uration	l	-	24	x 60	x 60 –	0.007 1/3
Peak Flow	=	Average F	low	х	6				
Peak Flow	=	0.057 l/	S	Х	6	= 0.3	344 I	/s	

Managing Director Ciarán Kennedy, BSc(Hons) StructEng, Dip Struct Eng, CEng, MIStructE, MIEI, FConsEI. Directors Vincent Barrett, BSc (Eng), Dip Struct Eng, MSc, DIC, CEng, MIStructE, MIEI, FConsEI. John Considine, BE, CEng, MIStructE, MIEI, FConsEI. Stephen O'Connor, BSc (Eng), Dip Struct Eng, CEng, MIStructE, MIEI, FConsEI. Associate Directors John Cunningham, BEng, CEng, MIEI. Ed Carthy, NCEA Cert Eng Tech IEI.

Dublin | London | Sofia Sandwith House, 52-54 Lower Sandwith Street, Dublin 2, D02 WR26, Ireland

Phone +353 1 6773200 Email bmce@bmce.ie www.bmce.ie

C: <u>COMMERCIAL: RETAIL UNITS</u>

The foul effluent from the proposed commerical unit is calculated as per the Irish Water Code of Practice for Wastewater Infrastructure (Dec. 2017) assuming dry weather flow of 45 I/occupant/day plus a 10% infiltration rate. Workers calculated: area in m² / area per FTE; as per Employment Densities Guide from OFFPAT. Type Retail A1 – High street with 18 FTE per m².

Area	=	2000 m²					
FTE per m ²	=	18					
No. of FTE	=	Area / I	FTE m ²				
No. of Occupants	=	2000 m ² /	18 =	111.1			
No. of FTE	=	No. of Occupar	nts x	Dry	Weathe	Flow	
Daily Flow	=	111.1 x	45	х	1.1 =	5,500 l/day	
Average Flow	= •	Daily Flov	V	- =	5,500 l.	/day =	0.064 I/s
-		Flow Durati	on		24 x 60	x 60	
Peak Flow	=	Average Flow	x 4	.5			
Peak Flow	=	0.064 l/s	x 4	.5 =	0.286	/s	

D: <u>COMMERCIAL: OFFICE UNITS</u>

The foul effluent from the proposed commerical unit is calculated as per the Irish Water Code of Practice for Wastewater Infrastructure (Dec. 2017) assuming dry weather flow of 45 I/occupant/day plus a 10% infiltration rate. Workers calculated: area in m² / area per FTE; as per Employment Densities Guide from OFFPAT. Type OFFICE - B1A – General Offices with 12 FTE per m².

Area	=	1500 m ²										
FTE per m ²	=	12										
No. of FTE	=	Area	/	FTE r	m²							
No. of Occupants	=	1500 m²	/	12	=	125	i.0					
No. of FTE	=	No. of O	ccupa	ants	х	D	ry W	/eathe	er Flo	w		
Daily Flow	=	125.0	Х	45		Х	1.	1 =	6,1	88 l/d	ay	
Average Flow	= -	Da Flow	ily Flo Dura	ow tion		- = -	2	5,188 24 x 6	l/day 0 x 60) =	=	0.072 l/s
Peak Flow Peak Flow	=	Average 0.072	Flow I/s	x x	4 4	.5 .5	=	0.322	l/s			

Managing Director Ciarán Kennedy, BSc(Hons) StructEng, Dip Struct Eng, CEng, MIStructE, MIEI, FConsEI. Directors Vincent Barrett, BSc (Eng), Dip Struct Eng, MSc, DIC, CEng, MIStructE, MIEI, FConsEI. Brian Mahony, BE, Dip Comp Eng, CEng, MIStructE, MIEI, FConsEI. John Considine, BE, CEng, MIStructE, MIEI, FConsEI. Stephen O'Connor, BSc (Eng), Dip Struct Eng, CEng, MIStructE, MIEI, FConsEI. Associate Directors John Cunningham, BEng, CEng, MIEI. Ed Carthy, NCEA Cert Eng Tech IEI.

Phone +353 1 6773200 Email bmce@bmce.ie www.bmce.ie

<u>APPENDIX:</u>	В	DATE: 07/01/2022
CALCULATION:	WATER DEMAND	PAGE: 2
PROJECT TITLE:	DUNDRUM CENTRAL	BY: D.K.

	SUMMARY:	Total Peak Demand	Total Average Demand		
A:	Residential	28.623 I/s	5.725 I/s		
В:	Creche	0.293 l/s	0.059 l/s		
C:	Commercial - Retail	0.362 l/s	0.072 l/s		
D:	Commercial - Office	0.326 l/s	0.065 l/s		
		29.603 I/s	5.921 l/s		

A: <u>RESIDENTIAL - 547 UNITS</u>

The water demand for the proposed development has been calculated using the guidelines given in the Irish Water Code of Practice for Water Infrastructure July 2020 Rev 2) Section 3.7.2 assuming a per-capita consumption of 150 I/head/day and using the Irish Water assumed average occupancy of 2.7 persons/unit. The average day/peak week demand is taken as 1.25 times the average daily domestic demand. The peak demand factor is taken as 5 times the average day/peak week demand.

No. of Units =	977				
No. of Occupants =	977	x 2.7	=	2637.9	
Avg. Daily Demand =	No. of Occ	upants	Х	Allowance per head	
Avg. Daily Demand =	2637.9	x 15	50	= 395,685 I/day	
Average Flow =	Dai Flow	ily Flow Duration		- x 1.25 = $\frac{395,685 \text{ I/day}}{24 \text{ x} 60 \text{ x} 60}$ x 1.25 = 5.725 I/s	
Peak Demand =	Average	Flow >	ς 5		
Peak Demand =	5.725	l/s >	ς 5	= 28.623 l/s	

B: <u>CRÈCHE</u>

Assume conservatively 75no. children catered for. Assume staff:child ratio of 1:5 on average (based on Schedule 6 Part 1 of Child Care Act 1991 (Early Years Services) Regulations 2016.). Thus assume total of 15no. staff + 75no. children = 75no. persons. As per Irish Water CoP for WW Infrastructure Appendix D, assume flow rate for "Schools - non-residential without a canteen" = 50litres/person/day. The average day/peak week demand is taken as 1.25 times the average daily domestic demand. The peak demand factor is taken as 5 times the average day/peak week demand.

No. of Children	=	75											
Staff:Child Ratio	=	1:5											
Total Population	=	75 + 15	5	= 90									
Daily Flow Daily Flow	=	No. of Workers 90 x	x 45	Dry \	Weathe	er Flo =	ow 4,050 l/day						
Average Flow	= .	Daily Flow Flow Duratior	ı	x	1.25	=	4,050 l/day 24 x 60 x 60	x	1.25	=	0.059 l/s		
Peak Flow	=	Average Flow	х	5									
Peak Flow	=	0.059 l/s	х	5 =	0.293	l/s							

Managing Director Ciarán Kennedy, BSc(Hons) StructEng, Dip Struct Eng, CEng, MIStructE, MIEI, FConsEI. Directors Vincent Barrett, BSc (Eng), Dip Struct Eng, MSc, DIC, CEng, MIStructE, MIEI, FConsEI. Brian Mahony, BE, Dip Comp Eng, CEng, MIStructE, MIEI, FConsEI. John Considine, BE, CEng, MIStructE, MIEI, FConsEI. Stephen O'Connor, BSc (Eng), Dip Struct Eng, CEng, MIStructE, MIEI, FConsEI. Associate Directors John Cunningham, BEng, CEng, MIEI. Ed Carthy, NCEA Cert Eng Tech IEI.

Dublin | London | Sofia Sandwith House, 52-54 Lower Sandwith Street, Dublin 2, D02 WR26, Ireland

Phone +353 1 6773200 Email bmce@bmce.ie www.bmce.ie

C: COMMERCIAL: RETAIL UNITS

The water demand from the proposed commerical unit is calculated as per the Irish Water Code of Practice for Water Infrastructure (Dec. 2017) assuming a water demand of 45 I/occupant/day. W Workers calculated: area in m² / area per FTE; as per Employment Densities Guide from OFFPAT. Type Retail A1 – High street with 18 FTE per m².

Area = FTE per m ² =	= 2000 m ² = 18		
No. of FTE = No. of Occupants =	= Area / = 2000 m² /	FTE m ² 18 = 111.1	
Daily Flow = Daily Flow =	Occupants 111.1 x	x Dry Weather Flow 45 = 5,000 I/day	
Average Flow =	Daily Flo	<u>ow</u> x 1.25 = — ation	$\frac{5,000 \text{ I/day}}{24 \text{ x } 60 \text{ x } 60} \text{ x } 1.25 = 0.072 \text{ I/s}$
Peak Flow = Peak Flow =	Average Flow 0.072 l/s	/ x 5 x 5 = 0.362 l/s	

D: COMMERCIAL: OFFICE UNITS

The water demand from the proposed commerical unit is calculated as per the Irish Water Code of Practice for Water Infrastructure (Dec. 2017) assuming a water demand of 45 I/occupant/day. Workers calculated: area in m² / area per FTE; as per Employment Densities Guide from OFFPAT. Type OFFICE - B1A – General Offices with 12 FTE per m².

Area	=	1500 m ²						
FTE per m ²	=	12						
No. of FTE	=	Area /	FTE m	1 ²				
No. of Occupants	=	1500 m ² /	12	= 12	5.0			
No. of FTE	=	No. of Occup	ants	х [Dry	Weather Flow		
Daily Flow	=	125.0 x	45	=	5,6	625 I/day		
Average Flow	= -	Daily Fl	ow	=		5,625 I/day	- =	0 065 1/s
riverage riew		Flow Dura	ation			24 x 60 x 60		0.000 # 3
Peak Flow	=	Average Flov	v x	5.0				
Peak Flow	=	0.065 l/s	Х	5	=	0.326 l/s		

Managing Director Ciarán Kennedy, BSc(Hons) StructEng, Dip Struct Eng, CEng, MIStructE, MIEI, FConsEI. Directors Vincent Barrett, BSc (Eng), Dip Struct Eng, MSc, DIC, CEng, MIStructE, MIEI, FConsEI. Brian Mahony, BE, Dip Comp Eng, CEng, MIStructE, MIEI, FConsEI. John Considine, BE, CEng, MIStructE, MIEI, FConsEI. Stephen O'Connor, BSc (Eng), Dip Struct Eng, CEng, MIStructE, MIEI, FConsEI. Associate Directors John Cunningham, BEng, CEng, MIEI. Ed Carthy, NCEA Cert Eng Tech IEI.

Appendix 5 Irish Water Letters

PUNCH Cosulting /Jamie Fennell

97 Henry Street Limerick V94YC2H

23 September 2021

Re: CDS19005661 pre-connection enquiry - Subject to contract | Contract denied

Connection for Housing Development of 1,251 units at Central Mental Hospital, 14 Dundrum Road, Dundrum, Dublin

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Central Mental Hospital, 14 Dundrum Road, Dundrum, Dublin (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY <u>THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A</u> <u>CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH</u> <u>TO PROCEED.</u>						
Water Connection	Feasible Subject to upgrades						
Wastewater Connection	Feasible Subject to upgrades						
SITE SPECIFIC COMMENTS							
Water Connection	Upgrade for approximately 720 metres of existing 9" CI (1936) main in Dundrum Road to 250mm ID will be required to accommodate the propose connection. Irish Water currently does not have any plans to commence upgrade works to its network in this area. At connection application stage the network upgrade will be reviewed and the upgrade works fee will be calculated in the connection offer fee or in a separate upgrade project agreement.						
Wastewater Connection	 Separate storm and foul water connection services should be provided for the Development. Current storm water discharge from the Site must be removed from the combined network. The storm water must be discharged only into the existing storm water network that is not connected to the Irish Water combined network. The storm water connection arrangement should be agreed with the Local Authority Drainage Division. 						

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

IW-HP-

	• The Customer will be required to implement wastewater discharge management to limit the foul flows from the Development to 3DWF (13l/s based on unit info in the PCE Application). The limitation of flows should be stepped in phases. At a connection application stage, the Customer must confirm how they plan to limit the flows (throttle or pump station) and provide details of the stepped discharges.
The design and construction	of the Water & Wastewater pipes and related infrastructure to be installed in

this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- 3) The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Marina Byrne from the design team via email mzbyrne@water.ie For further information, visit **www.water.ie/connections.**

Yours sincerely,

Monne Maesis

Yvonne Harris

Head of Customer Operations

John Considine BMCE Sandwith House 52-54 Lower Sandwith Street Dublin 2, Co. Dublin

3 March 2022

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

Re: Design Submission for Central Mental Hospital, 14 Dundrum Road, Dundrum, Dublin (the "Development") (the "Design Submission") / Connection Reference No: CDS19005661

Dear John Considine,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Fionán Ginty Phone: 01 89 25734 / 087 149 6032 Email: fginty@water.ie

Yours sincerely,

Monne Maesis

Yvonne Harris Head of Customer Operations

Appendix A

Document Title & Revision

- DCD-BMD-00-00-DR-C-1021 PL4
- DCD-BMD-00-00-DR-C-1040 PL4

Notes:

- A full detailed design submission for the proposed wastewater pump station(s) shall be submitted at connection application stage and will be subject to detailed design review. The impact of any Irish Water Capital projects will require review and further site design assessment at connection application stage.
- Wastewater long sections to be and submitted at connection application stage.

For further information, visit www.water.ie/connections

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

Appendix 6 Causeway Flow Network Model

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL	Barrett Mahony Consulting	File: SW Network A.pfd	Page 1
	Engineers Ltd.	Network: Catchment A	20.170
	52-54 Lower Sandwith Street	Dirk Kotze	Dundrum Central
	Dublin, D02 WR26	15/03/2022	Development

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	5	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	Scotland and Ireland	Connection Type	Level Soffits
M5-60 (mm)	18.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.277	Preferred Cover Depth (m)	1.200
CV	1.000	Include Intermediate Ground	\checkmark
Time of Entry (mins)	4.00	Enforce best practice design rules	х

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
S2.0	0.078	4.00	45.060	1200	-37.004	-39.118	1.610
S2.1	0.038	4.00	44.940	1200	-47.311	-6.499	1.718
S1.7	0.000	4.00	44.820	1200	-45.001	25.858	1.620
S1.8	0.031	4.00	44.520	1200	-54.842	17.260	1.539
S1.8A	0.045	4.00	43.990	1350	-63.566	27.207	2.868
S1.9	0.051	4.00	43.850	1350	-83.594	50.171	2.908
S1.10	0.025	4.00	43.750	1350	-111.959	65.318	3.022
S12.3	0.409	4.00	43.340	1200	-117.599	51.937	2.540
S12.4	0.000		43.520	1200	-122.275	60.403	2.784
S1.11	0.015	4.00	43.560	1350	-117.985	74.660	2.998
S1.12	0.015	4.00	43.390	1350	-100.494	85.972	3.036
S1.13	0.035	4.00	43.520	1350	-81.423	92.065	4.670
S1.14	0.000		43.750	1350	-88.593	114.679	5.058
S1.15	0.000		42.630	1350	-121.629	104.139	4.169
S1.16	0.009	4.00	43.100	1350	-137.098	92.300	4.769
S1.17	0.013	4.00	42.030	1350	-152.100	111.900	3.849
S1.18	0.017	4.00	40.020	1350	-167.504	139.464	2.039
S3.0	0.063	4.00	43.530	1200	-169.331	21.994	1.430
S3.1	0.053	4.00	42.710	1200	-226.629	20.964	1.374
S3.2	0.006	4.00	43.060	1200	-226.745	27.434	1.853
S3.3	0.000		43.100	1200	-226.985	40.771	2.071
S3.4	0.000	4.00	41.240	1200	-221.854	71.886	0.526
S3.5	0.000	4.00	40.420	1200	-214.194	113.174	0.406
S3.6	0.030	4.00	40.620	1200	-209.623	114.558	0.686
S3.7	0.000		40.010	1200	-205.576	130.131	1.935
S3.8	0.000		39.760	1200	-208.554	135.453	1.787
S1.19	0.032	4.00	38.770	1350	-201.014	163.218	1.770
S1.20	0.000		38.700	1350	-216.765	168.251	1.878
S12.2	0.082	4.00	44.070	1200	-66.074	23.848	2.831
S12.0	0.050	4.00	43.600	1200	-154.630	22.256	1.400
S12.1	0.050	4.00	43.810	1200	-113.229	23.003	2.024

<u>Links (Input)</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
2.000	S2.0	S2.1	34.209	0.600	43.450	43.222	0.228	150.0	225	4.54	50.0
2.001	S2.1	S1.8	24.924	0.600	43.222	43.056	0.166	150.0	225	4.93	50.0
3.000	S1.7	S1.8	13.068	0.600	43.200	43.113	0.087	150.0	225	4.20	50.0
2.002	S1.8	S1.8A	13.231	0.600	42.981	42.903	0.078	169.6	300	5.11	50.0

BN	BARRE CONSUL CIVIL &	TT MAH TING ENGIN STRUCTU	ONY ieers jral	Barrett Ma Engineers I 52-54 Lowe	File: SW Network A.pfd Network: Catchment A Dirk Kotze				Page 2 20.170 Dundrum Central				
				Dublin, DO	2 WR26		15/03/20)22			Development		
	Links (Input)												
	Name	US Node	DS Nod	Length e (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)	
	1.000	S12.0	S12.	41.408	0.600	42.200	41.786	0.414	100.0	225	4.53	50.0	
	1.001	S12.1	S12.	2 47.163	0.600	41.786	41.314	0.472	100.0	225	5.13	50.0	
	1.002	S12.2	S1.8	4 .192	0.600	41.239	41.197	0.042	100.0	300	5.17	50.0	
	1.003	S1.8A	S1.9	30.471	0.600	41.122	40.942	0.180	169.3	375	5.54	50.0	
	1.004	S1.9	S1.1	32.156	0.600	40.942	40.728	0.214	150.0	375	5.90	50.0	
	1.005	S1.10	S1.1	1 11.117	0.600	40.728	40.654	0.074	150.0	375	6.03	50.0	
	4.000	S12.3	S12.4	9.672	0.600	40.800	40.736	0.064	150.0	300	4.13	50.0	
	4.001	S12.4	S1.1	1 14.888	0.600	40.736	40.637	0.099	150.0	300	4.32	50.0	
	1.006	S1.11	S1.1	2 20.830	0.600	40.562	40.354	0.208	100.0	375	6.22	50.0	
	1.007	S1.12	S1.1	3 20.021	0.600	40.354	40.154	0.200	100.0	375	6.40	50.0	
	1.008	S1.13	S1.14	4 23.723	0.600	38.850	38.692	0.158	150.0	450	6.64	50.0	
	1.009	S1.14	S1.1	34.677	0.600	38.692	38.461	0.231	150.0	450	6.99	50.0	
	1.010	S1.15	S1.1	5 19.480	0.600	38.461	38.331	0.130	150.0	450	7.19	50.0	
	1.011	S1.16	S1.1	7 24.682	0.600	38.331	38.181	0.150	164.5	450	7.45	50.0	
	1.012	S1.17	S1.1	3 31.576	0.600	38.181	37.981	0.200	157.9	450	7.77	50.0	
	1.013	\$1.18	\$1.1	41.075	0.600	37.981	37.000	0.981	41.9	450	7.99	50.0	
	5.000	S3.0	S3.1	57.307	0.600	42.100	41.336	0.764	75.0	225	4.63	50.0	
	5.001	S3.1	S3.2	6.471	0.600	41.336	41.207	0.129	50.0	225	4.69	50.0	
	5.002	S3.2	S3.3	13.339	0.600	41.207	41.029	0.178	75.0	225	4.84	50.0	
	5.003	S3.3	S3.4	31.535	0.600	41.029	40.714	0.315	100.0	225	5.24	50.0	
	5.004	S3.4	S3.5	41.993	0.600	40.714	40.014	0.700	60.0	225	5.65	50.0	
	5.005	S3.5	S3.6	4.776	0.600	40.014	39.934	0.080	60.0	225	5.70	50.0	
	5.006	S3.6	S3.7	16.090	0.600	39.934	39.666	0.268	60.0	225	5.86	50.0	
	5.007	S3.7	S3.8	6.099	0.600	38.075	37.973	0.102	60.0	225	5.92	50.0	
	5.008	S3.8	S1.1	28.771	0.600	37.973	37.493	0.480	60.0	225	6.20	50.0	
	1.014	S1.19	S1.2	16.536	0.600	37.000	36.822	0.178	92.9	450	8.12	50.0	

Simulation Settings

Rainfall Methodology	FSR	Skip Steady State	х
FSR Region	Scotland and Ireland	Drain Down Time (mins)	240
M5-60 (mm)	18.000	Additional Storage (m³/ha)	20.0
Ratio-R	0.277	Check Discharge Rate(s)	х
Summer CV	1.000	Check Discharge Volume	х
Analysis Speed	Normal		

Storm Durations

15	60	180	360	600	960	2160	4320	7200	10080
30	120	240	480	720	1440	2880	5760	8640	

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)	
5	20	0	0	
30	20	0	0	
100	20	0	0	

	Barrett Maho	ny Consulting	File	: SW Netw	ork A.pfd	Page 3	
R M BARRETT MAHUNY CONSULTING ENGINEERS	Engineers Ltd		Net	work: Catc	hment A	20.170	
CIVIL & STRUCTURAL	52-54 Lower	Sandwith Street	t Dirl	< Kotze		Dundrum	Central
	Dublin, D02 V	VR26	15/	03/2022		Developm	nent
	No	ode S1.13 Onlin	e Hydro	-Brake [®] Co	ontrol		
F	lap Valve x			Obiective	e (HE) Minimise	upstream	storage
Replaces Downstr	eam Link √		Sum	np Available	e √		
Invert	Level (m) 38.	850	Produ	uct Numbe	r CTL-SHE-0074-	4000-3000)-4000
Design D	9 (m) 3.0	00 Min 0	Dutlet Di	iameter (m) 0.100		
Design	Flow (I/s) 4.0	Min N	ode Diar	meter (mm) 1200		
	No	ode S12.3 Onlin	e Hydro	-Brake [®] Co	ontrol		
F	lan Valve x			Objective	e (HF) Minimise	unstream	storage
Replaces Downstr	eam Link √		Sum	np Available	e √		
Invert	Level (m) 40.	800	Produ	uct Numbe	r CTL-SHE-0057-	2000-2000	-2000
Design D	epth (m) 2.0	00 Min 0	Dutlet Di	iameter (m	i) 0.075		
Design	Flow (l/s) 2.0	Min N	ode Diar	meter (mm) 1200		
	<u>N</u>	ode S3.7 Online	e Hydro-	Brake [®] Co	<u>ntrol</u>		
F	lan Valve - x			Ohiectiv	e (HF) Minimise	unstream	storage
Replaces Downstr	eam Link √		Sum	Available	e √	upstream	Storage
Invert	Level (m) 38.	075	Produ	uct Numbe	r CTL-SHE-0057-	2000-2000)-2000
Design D) epth (m) 2.0	00 Min (Dutlet Di	iameter (m) 0.075		
Design	Flow (l/s) 2.0	Min N	ode Diar	meter (mm) 1200		
	No	ode S1.19 Onlin	e Hydro	-Brake [®] Co	ontrol		
F	lan Valve x			Objective	e (HF) Minimise	unstream	storage
Replaces Downstr	eam Link √		Sum	np Available	e √	apotream	Storage
Invert	Level (m) 37.	000	Produ	uct Numbe	r CTL-SHE-0116-	7000-1500)-7000
Design D	epth (m) 1.5	00 Min 0	Dutlet Di	iameter (m) 0.150		
Design	Flow (l/s) 7.0	Min N	ode Diar	meter (mm) 1200		
	No	de S1.13 Depth	n/Area S	torage Stru	<u>ucture</u>		
Base Inf Coefficien	it (m/hr) 0.26	400 Safety	/ Factor	5.0	Invert I	evel (m)	38.850
Side Inf Coefficien	it (m/hr) 0.26	6400 P	orosity	0.95	Time to half emp	ty (mins)	0
Depth	Area Inf Area	a Depth	Area	Inf Area	Depth Area	Inf Area	
(m)	(m²) (m²)	(m)	(m²)	(m²)	(m) (m²)	(m²)	
0.000 2	226.0 226.0	3.000	226.0	422.8	3.010 0.0	422.8	
	No	de S12.3 Depth	n/Area Si	torage Stru	<u>ucture</u>		
Base Inf Coefficien	it (m/hr) 0.00	000 Safety	/ Factor	2.0	Invert I	evel (m)	40 800
Side Inf Coefficien	it (m/hr) 0.00	0000 P	orosity	1.00	Time to half emp	ty (mins)	
Depth	Area Inf Area	a Depth	Area	Inf Area	Depth Area	Inf Area	
(m)	(m²) (m²)	(m)	(m²)	(m²)	(m) (m²)	(m²)	
0.000	182.2 0.0	2.000	182.2	0.0	2.010 0.0	0.0	
	No	ode S3.7 Depth	/Area St	orage Stru	<u>cture</u>		
Base Inf Coefficien	it (m/hr) 0.26	400 Safety	/ Factor	2.0	Invert I	evel (m)	38.075
Side Inf Coefficien	it (m/hr) 0.26	6400 P	orosity	1.00	Time to half emp	ty (mins)	0
	,		,	I	F	,	

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL	Barrett Mahony Consulting Engineers Ltd. 52-54 Lower Sandwith Street Dublin, D02 WR26	File: SW Network A.pfd Network: Catchment A Dirk Kotze 15/03/2022	Page 4 20.170 Dundrum Central Development
Depth (m) 0.000	Area Inf Area Depth Area (m²) (m²) (m) (m) 77.0 77.0 2.000 77	ea Inf Area Depth Area (a ²) (m ²) (m) (m ²) (.0 156.4 2.010 0.0	Inf Area (m²) 156.4
	Flow+ v10.3 Copyright © 1988-	2022 Causeway Technologies Ltd	

		Barrett	Mahony Cons	ulting	File: SW Network A.pfd Page 5						
DN	BARRETT MAHONY	Enginee	rs Ltd.	•	Netwo	rk: Cato	hment A		20.170		
	CIVIL & STRUCTURAL	52-54 Lo	ower Sandwit	h Street	Dirk Ko	otze			Dundrum	Central	
		Dublin,	D02 WR26		15/03/2022 Development						
	<u>Results f</u>	or 5 year	+20% CC Cri	tical Storn	n Duratio	n. Low	est mass b	alance:	<u>99.84%</u>		
	Nede Frent		Deal	Laval	Dauth	.	Nada	Flee	-l C1	-	
	Node Event	US	Реак	Level	Depth	Inflow	Node	F100	d St	atus	
	15 minute summer	NOC	e (mins)	(m)	(m)	(I/S)		(m ²			
	15 minute summer	52.0	10	43.373	0.125	24.9	0.2562				
	15 minute summer	52.1	10	43.393	0.171	57.1	0.2090				
	15 minute summer	51.7 C1 0	10	45.200	0.000	0.0	0.0000				
	15 minute summer	31.0 C1 0	10	45.151	0.170	40.1 115 /	0.2012				
	15 minute summer	S1.0 S1.0	11	41.309	0.207	120.9	0.4034				
	15 minute summer	S1.5 C1 1	0 11	41.221	0.279	125.0	0.4973				
	2160 minute summ	or 51.1	3 1560	41.020	0.300	130.2 8 7	170 / 076				
	15 minute summer	CI 312.	J 1300	41.702	0.902	0.7 1 /	0 1071			TANGLU	
	15 minute summer	S12.	4 11 1 11	40.831	0.095	1/1 Q	0.1071				
	15 minute summer	S1.1 S1.1	1 11 7 11	40.020 /0.610	0.200	141.0	0.4075				
	600 minute summe	r \$1.1	3 435	39 484	0.205	27.2	137 1219			HARGED	
	ooo minute summe	1 51.1	5 455	59.404	0.034	27.2	137.1219	0.000		TANGLU	
	60 minute summer	S1 1	4 38	38 723	0.031	25	0 0444	0.000	00 ОК		
	240 minute summe	r \$1.1	5 440	38 492	0.031	2.5	0.0445				
	30 minute summer	. <u>51.1</u> S1.1	6 18	38 372	0.041	45	0.0597	0.000			
	30 minute summer	S1.1	7 18	38.236	0.055	7.9	0.0823	0.000	00 OK		
	30 minute summer	S1.1	8 18	38.029	0.048	12.4	0.0768	0.000	00 OK		
	15 minute summer	S3.0	10	42.189	0.089	20.1	0.1788	0.000	00 OK		
	15 minute summer	S3.1	10	41.471	0.135	36.9	0.2569	0.000	00 OK		
	15 minute summer	\$3.2	10	41.352	0.145	38.4	0.1739	0.000	00 OK		
	15 minute summer	S3.3	10	41.180	0.151	38.2	0.1712	0.000	00 ОК		
	15 minute summer	S3.4	11	40.835	0.121	37.6	0.1363	0.000	00 OK		
	15 minute summer	S3.5	11	40.168	0.154	38.2	0.1742	0.000	00 OK		
	15 minute summer	S3.6	11	40.085	0.151	46.1	0.3019	0.000	00 ОК		
	Link Event	US	Link	DS	Outflow	w Vel	ocity Flo	w/Cap	Link	Discharge	
	(Upstream Depth)	Node		Node	(I/s)	(n	n/s)		Vol (m³)	Vol (m³)	
	15 minute summer	S2.0	2.000	S2.1	25.	0 0).930	0.589	0.9347		
	15 minute summer	S2.1	2.001	S1.8	36.	2 1	L.169	0.855	0.7755		
	15 minute summer	S1.7	3.000	S1.8	0.	0 0	0.000	0.000	0.0291		
	15 minute summer	S1.8	2.002	S1.8A	45.	4 1	L.174	0.534	0.5135		
	15 minute summer	S1.8A	1.003	S1.9	113.	5 1	L.329	0.740	2.6043		
	15 minute summer	S1.9	1.004	S1.10	129.	6 1	L.420	0.795	2.9353		
	15 minute summer	S1.10	1.005	S1.11	137.	0 1	L.560	0.840	0.9738		
	2160 minute summer	S12.3	Hydro-Brake	[®] S12.4	1.	4					
	15 minute summer	S12.4	4.001	S1.11	3.	1 ().464	0.034	0.4949		
	15 minute summer	\$1.11	1.006	S1.12	141.	5 1	L.694	0.707	1.7405		
	15 minute summer	\$1.12	1.007	\$1.13	145.	1 1	1.8/3	0.725	1.5523		
	600 minute summer	\$1.13	Hydro-Brake	[®] \$1.14	2.	5					
	600 minute summer	\$1.13	Infiltration	C4 4 F	3.	9		0.000	0 1 6 2 1		
	60 minute summer	51.14	1.009	51.15	2.	5 (J.53U	0.009	0.1031		
	240 minute summer	51.15	1.010	51.16	۷.	5 (J.519	0.009	0.1030		
	30 minute summer	ST.TD	1.011 1.012	SI.1/	4.	3 (0 /	7.49/ 770	0.01/	0.2225		
	20 minute summer	ST'T	1.012	ST'TQ	/.	ol J	1.119 1 701	0.030	2 4250		
	15 minute summer	21.19 21.19	1.013	CD 1 21.12	12.		7.201 1.026	0.024	5.435U		
	15 minute summer	33.U C2 1	5.000	ວວ.⊥ ເວົາ	20. 36	5 4	L.UZO	0.534	0 1602		
	15 minute summer	55.T 52.2	5.001	33.2 62 2	30. 20	5 1 7 4	1 376	0.495	0.1003		
	15 minute summer	55.2	5.002	55.5 C2 /	30. 27	<u>د</u> ک	1 515	0.030	0.3704		
	15 minute summer	55.5 53.4	5.003	55.4 52 5	37. 20	2 1	1 515	0.723	1 0627		
	15 minute summer	53.4	5 005	53.5 53.6	30. 22	2 1	1 349	0 569	0 1366		
	15 minute summer	S3.6	5.006	53.7	46		L.732	0.686	0.4283		
								2.000	2205		

Flow+ v10.3 Copyright © 1988-2022 Causeway Technologies Ltd

ΒM

	Barrett Mahony Consult
BARRETT MAHONY	Engineers Ltd.
CIVIL & STRUCTURAL	52-54 Lower Sandwith S
	Dublin, D02 WR26

onsulting	File: SW Network A.pfd	Page 6
	Network: Catchment A	20.170
with Street	Dirk Kotze	Dundrum Central
	15/03/2022	Development

15/03/2022 Development

Results for 5 year +20% CC Critical Storm Duration. Lowest mass balance: 99.84%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	
120 minute summer	S3.7	86	38.371	0.296	22.1	23.1219	0.0000	SURCHARGED	
180 minute summer	S3.8	152	37.995	0.022	1.3	0.0249	0.0000	ОК	
120 minute summer	S1.19	86	37.927	0.927	14.0	1.6622	0.0000	SURCHARGED	
15 minute summer	S1.20	1	36.822	0.000	7.0	0.0000	0.0000	ОК	
15 minute summer	S12.2	10	41.440	0.201	57.3	0.3438	0.0000	ОК	
15 minute summer	S12.0	10	42.285	0.085	16.0	0.1568	0.0000	ОК	
15 minute summer	S12.1	10	41.915	0.129	32.0	0.2103	0.0000	ОК	

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
120 minute summer	S3.7	Hydro-Brake [®]	S3.8	1.3				
120 minute summer	S3.7	Infiltration		3.2				
180 minute summer	S3.8	5.008	S1.19	1.3	0.669	0.020	0.6005	
120 minute summer	S1.19	Hydro-Brake®	S1.20	7.0				77.1
15 minute summer	S12.2	1.002	S1.8A	55.6	1.266	0.501	0.2048	
15 minute summer	S12.0	1.000	S12.1	16.0	0.891	0.307	0.7730	
15 minute summer	S12.1	1.001	S12.2	31.1	1.349	0.598	1.0967	

		Barrett Ma	hony Cor	nsulting	File: S	SW Netw	ork A.pfd	Pa	Page 7		
	BARRETT MAHONY	Engineers I	_td.		Netw	ork: Catc	hment A	20	0.170		
	CIVIL & STRUCTURAL	52-54 Lowe	er Sandw	ith Street	Dirk I	Kotze		Di	undrum Central		
		Dublin, D02	2 WR26		15/0	3/2022		De	evelopment		
Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.84%											
	Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status		
		Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)			
	15 minute summer	S2.0	10	43.634	0.184	36.6	0.3870	0.0000	ОК		
	15 minute summer	S2.1	10	43.509	0.287	53.0	0.4512	0.0000	SURCHARGED		
	15 minute summer	S1.7	1	43.200	0.000	0.0	0.0000	0.0000	ОК		
	15 minute summer	S1.8	10	43.197	0.216	64.9	0.3314	0.0000	ОК		
	15 minute summer	S1.8A	11	41.699	0.577	155.1	1.0062	0.0000	SURCHARGED		
	15 minute summer	S1.9	11	41.468	0.526	173.8	0.9374	0.0000	SURCHARGED		
	15 minute summer	S1.10	11	41.154	0.426	185.5	0.6799	0.0000	SURCHARGED		
	2160 minute summe	er S12.3	1680	42.195	1.395	11.7	260.2497	0.0000	SURCHARGED		
	15 minute summer	S12.4	11	40.952	0.216	4.7	0.2444	0.0000	ОК		
	15 minute summer	S1.11	11	40.952	0.390	192.2	0.5969	0.0000	SURCHARGED		
	15 minute summer	S1.12	11	40.701	0.347	196.6	0.5316	0.0000	ОК		
	720 minute summer	S1.13	540	39.849	0.999	33.8	216.0671	0.0000	SURCHARGED		
	15 minute summer	S1.14	13	38.723	0.031	2.5	0.0445	0.0000	ОК		
	5760 minute summe	er S1.15	3720	38.492	0.031	2.5	0.0445	0.0000	ОК		
	30 minute summer	S1.16	18	38.378	0.047	6.0	0.0692	0.0000	ОК		
	30 minute summer	S1.17	18	38.247	0.066	11.3	0.0982	0.0000	ОК		
	120 minute summer	S1.18	84	38.228	0.247	10.8	0.3945	0.0000	ОК		
	15 minute summer	S3.0	10	42.211	0.111	29.6	0.2224	0.0000	ОК		
	15 minute summer	S3.1	10	41.527	0.191	54.4	0.3626	0.0000	ОК		

0.225

0.232

0.151

0.219

0.207

56.0

55.1

53.4

52.8

64.5

0.2619

0.1704

0.2482

0.4153

0.2693 0.0000 SURCHARGED

ОК

ОК

ОК

SURCHARGED

0.0000

0.0000

0.0000

0.0000

11 41.432

11 40.141

41.261

40.865

40.233

11

10

11

S3.2

S3.3

S3.4

S3.5

S3.6

15 minute summer

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Opstream Depth)	Node		Node	(1/s)	(m/s)		voi (m°)	voi (m²)
15 minute summer	\$2.0	2.000	\$2.1	35.2	0.982	0.831	1.2758	
15 minute summer	S2.1	2.001	S1.8	50.3	1.280	1.188	0.9343	
15 minute summer	S1.7	3.000	S1.8	0.0	0.000	0.000	0.0883	
15 minute summer	S1.8	2.002	S1.8A	64.1	1.261	0.753	0.6732	
15 minute summer	S1.8A	1.003	S1.9	154.0	1.396	1.004	3.3609	
15 minute summer	S1.9	1.004	S1.10	175.8	1.594	1.078	3.5467	
15 minute summer	S1.10	1.005	S1.11	186.4	1.704	1.143	1.1631	
2160 minute summer	S12.3	Hydro-Brake®	S12.4	1.7				
15 minute summer	S12.4	4.001	S1.11	7.1	0.463	0.079	0.9287	
15 minute summer	S1.11	1.006	S1.12	190.8	1.738	0.954	2.2592	
15 minute summer	S1.12	1.007	S1.13	193.9	1.956	0.969	1.9810	
720 minute summer	S1.13	Hydro-Brake®	S1.14	2.5				
720 minute summer	S1.13	Infiltration		4.2				
15 minute summer	S1.14	1.009	S1.15	2.5	0.577	0.009	0.1631	
5760 minute summer	S1.15	1.010	S1.16	2.5	0.520	0.009	0.0938	
30 minute summer	S1.16	1.011	S1.17	5.9	0.519	0.024	0.2837	
30 minute summer	S1.17	1.012	S1.18	11.3	0.865	0.044	0.9110	
120 minute summer	S1.18	1.013	S1.19	10.7	0.281	0.021	5.0826	
15 minute summer	S3.0	5.000	S3.1	29.5	1.086	0.492	1.5840	
15 minute summer	S3.1	5.001	S3.2	53.2	1.444	0.722	0.2410	
15 minute summer	S3.2	5.002	S3.3	55.1	1.438	0.918	0.5303	
15 minute summer	S3.3	5.003	S3.4	53.4	1.612	1.026	1.0667	
15 minute summer	S3.4	5.004	S3.5	52.8	1.579	0.786	1.4144	
15 minute summer	S3.5	5.005	S3.6	53.1	1.423	0.789	0.1856	
15 minute summer	S3.6	5.006	S3.7	64.6	1.811	0.961	0.5738	

Flow+ v10.3 Copyright © 1988-2022 Causeway Technologies Ltd

20.170 Dundrum Central Development

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.84%

US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
S3.7	128	38.562	0.487	24.3	38.0751	0.0000	SURCHARGED
S3.8	80	38.234	0.261	2.6	0.2956	0.0000	SURCHARGED
S1.19	86	38.230	1.230	19.0	2.2049	0.0000	SURCHARGED
S1.20	1	36.822	0.000	7.0	0.0000	0.0000	ОК
S12.2	11	41.742	0.503	80.5	0.8604	0.0000	SURCHARGED
S12.0	10	42.305	0.105	23.5	0.1940	0.0000	ОК
S12.1	11	41.999	0.213	47.0	0.3457	0.0000	ОК
	US Node S3.7 S3.8 S1.19 S1.20 S12.2 S12.0 S12.1	US Node S3.7Peak (mins) 128S3.880S1.1986S1.201S12.211S12.010S12.111	US Node S3.7Peak (mins) 128Level (m) 38.562S3.88038.234S1.198638.230S1.20136.822S12.21141.742S12.01042.305S12.11141.999	US Node (mins)Peak (mins)Level (m)Depth (m)S3.712838.5620.487S3.88038.2340.261S1.198638.2301.230S1.20136.8220.000S12.21141.7420.503S12.01042.3050.105S12.11141.9990.213	US Node (mins) 53.7Peak (mins) 128Level (m) (m) 38.562Depth (m) (m) 0.487Inflow (l/s) 24.3S3.88038.2340.2612.6S1.198638.2301.23019.0S1.20136.8220.0007.0S12.21141.7420.50380.5S12.01042.3050.10523.5S12.11141.9990.21347.0	US Node (mins)Peak (m) 38.562Level (m) (m) 0.487Depth (l/s) 24.3Inflow Vol (m³) 38.0751S3.88038.2340.2612.60.2956S1.198638.2301.23019.02.2049S1.20136.8220.0007.00.0000S12.21141.7420.50380.50.8604S12.01042.3050.10523.50.1940S12.11141.9990.21347.00.3457	US Node (mins) 53.7Peak (mins) 128Level (m) (m) 38.562Depth (m) (m) 0.487Inflow (l/s) 24.3Node Vol (m³) 38.0751Flood (m³) 0.0000S3.88038.2340.2612.60.29560.0000S1.198638.2301.23019.02.20490.0000S1.20136.8220.0007.00.00000.0000S12.21141.7420.50380.50.86040.0000S12.01042.3050.10523.50.19400.0000S12.11141.9990.21347.00.34570.0000

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
180 minute summer	S3.7	Hydro-Brake®	S3.8	1.3				
180 minute summer	S3.7	Infiltration		3.5				
120 minute summer	S3.8	5.008	S1.19	3.9	0.669	0.058	1.1443	
120 minute summer	S1.19	Hydro-Brake®	S1.20	7.0				88.0
15 minute summer	S12.2	1.002	S1.8A	73.8	1.232	0.664	0.2952	
15 minute summer	S12.0	1.000	S12.1	23.5	0.938	0.452	1.1458	
15 minute summer	S12.1	1.001	S12.2	44.5	1.274	0.857	1.8553	

		Barrett Ma	hony Cor	nsulting	File:	SW Netwo	ork A.pfd	Pa	Page 9				
	BARRETT MAHONY	Engineers I	Ltd.		Netw	ork: Catc	hment A	20	20.170				
	CIVIL & STRUCTURAL	52-54 Low	er Sandw	ith Street	Dirk	Kotze		Di	undrum Central				
		Dublin, DO	2 WR26		15/0	3/2022		De	Development				
										-			
	Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.84%												
	Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status				
		Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)					
	15 minute summer	S2.0	10	43.973	0.523	47.6	1.0987	0.0000	SURCHARGED				
	15 minute summer	S2.1	11	43.696	0.474	66.2	0.7454	0.0000	SURCHARGED				
	15 minute summer	S1.7	11	43.246	0.046	1.8	0.0523	0.0000	ОК				
	15 minute summer	S1.8	11	43.246	0.265	82.4	0.4065	0.0000	ОК				
	15 minute summer	S1.8A	11	42.234	1.112	185.0	1.9404	0.0000	SURCHARGED				
	15 minute summer	S1.9	11	41.907	0.965	207.1	1.7195	0.0000	SURCHARGED				
	15 minute summer	S1.10	11	41.470	0.742	217.8	1.1844	0.0000	SURCHARGED				
	2160 minute summ	er S12.3	1680	42.593	1.793	14.3	334.4710	0.0000	SURCHARGED				
	15 minute summer	S12.4	11	41.238	0.502	7.8	0.5673	0.0000	SURCHARGED				
	15 minute summer	S1.11	11	41.237	0.675	224.5	1.0331	0.0000	SURCHARGED				
	15 minute summer	S1.12	11	40.870	0.516	229.5	0.7895	0.0000	SURCHARGED				
	600 minute summe	r S1.13	495	40.182	1.331	46.5	287.9774	0.0000	SURCHARGED				
	600 minute summe	r S1.14	495	38.724	0.032	2.7	0.0465	0.0000	ОК				
	600 minute summe	r S1.15	495	38.494	0.033	2.7	0.0466	0.0000	ОК				
	120 minute summe	r S1.16	94	38.405	0.074	4.9	0.1091	0.0000	ОК				
	120 minute summe	r S1.17	88	38.409	0.228	8.5	0.3420	0.0000	ОК				
	120 minute summe	r S1.18	90	38.406	0.425	13.2	0.6796	0.0000	ОК				
	15 minute summer	S3.0	10	42.230	0.130	38.5	0.2610	0.0000	ОК				
	15 minute summer	S3.1	11	41.839	0.503	70.8	0.9570	0.0000	SURCHARGED				

41.691

41.422

40.947

40.370

40.257

0.484

0.393

0.233

0.356

0.323

63.6

62.9

62.5

61.7

71.8

11

11

12

11

11

15 minute summer

S3.2

S3.3

S3.4

S3.5

S3.6

0.5783

0.4444

0.2637

0.4026

0.6485

0.0000

0.0000

0.0000

0.0000

0.0000

SURCHARGED

SURCHARGED

FLOOD RISK

FLOOD RISK

SURCHARGED

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	S2.0	2.000	S2.1	43.1	1.085	1.019	1.3605	
15 minute summer	S2.1	2.001	S1.8	64.3	1.618	1.519	0.9681	
15 minute summer	S1.7	3.000	S1.8	-1.8	0.252	-0.042	0.1978	
15 minute summer	S1.8	2.002	S1.8A	81.8	1.331	0.961	0.8079	
15 minute summer	S1.8A	1.003	S1.9	181.3	1.644	1.181	3.3609	
15 minute summer	S1.9	1.004	S1.10	205.2	1.861	1.258	3.5467	
15 minute summer	S1.10	1.005	S1.11	216.9	1.967	1.330	1.2262	
2160 minute summer	S12.3	Hydro-Brake®	S12.4	1.9				
15 minute summer	S12.4	4.001	S1.11	-7.8	0.454	-0.086	1.0484	
15 minute summer	S1.11	1.006	S1.12	221.9	2.012	1.109	2.2975	
15 minute summer	S1.12	1.007	S1.13	229.2	2.080	1.146	2.1556	
600 minute summer	S1.13	Hydro-Brake®	S1.14	2.7				
600 minute summer	S1.13	Infiltration		4.6				
600 minute summer	S1.14	1.009	S1.15	2.7	0.544	0.010	0.1754	
600 minute summer	S1.15	1.010	S1.16	2.7	0.533	0.010	0.1018	
120 minute summer	S1.16	1.011	S1.17	4.9	0.524	0.019	1.1831	
120 minute summer	S1.17	1.012	S1.18	9.5	0.789	0.037	3.7078	
120 minute summer	S1.18	1.013	S1.19	12.0	0.276	0.024	6.4400	
15 minute summer	S3.0	5.000	S3.1	38.5	1.120	0.640	1.8184	
15 minute summer	S3.1	5.001	S3.2	60.2	1.513	0.816	0.2574	
15 minute summer	S3.2	5.002	S3.3	62.9	1.582	1.047	0.5305	
15 minute summer	S3.3	5.003	S3.4	62.5	1.602	1.202	1.2542	
15 minute summer	S3.4	5.004	S3.5	61.7	1.597	0.917	1.6701	
15 minute summer	S3.5	5.005	S3.6	61.2	1.538	0.910	0.1899	
15 minute summer	S3.6	5.006	S3.7	70.3	1.771	1.046	0.6299	

Flow+ v10.3 Copyright © 1988-2022 Causeway Technologies Ltd

BARRETT MAHO CONSULTING ENGINE CIVIL & STRUCTU

	Barrett Mahony Consulting
ONY	Engineers Ltd.
IRAL	52-54 Lower Sandwith Stree
	Dublin, D02 WR26

ulting	File: SW Network A.pfd	Pa
	Network: Catchment A	20.
n Street	Dirk Kotze	Du
	15/03/2022	De

Page 10 20.170 Dundrum Central Development

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.84%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m ³)	Flood (m³)	Status
180 minute summer	S3.7	136	38.752	0.677	31.2	52.8639	0.0000	SURCHARGED
120 minute summer	S3.8	86	38.420	0.447	1.8	0.5055	0.0000	SURCHARGED
120 minute summer	S1.19	86	38.410	1.410	21.6	2.5283	0.0000	SURCHARGED
15 minute summer	S1.20	1	36.822	0.000	7.0	0.0000	0.0000	ОК
15 minute summer	S12.2	11	42.289	1.050	89.0	1.7954	0.0000	SURCHARGED
15 minute summer	S12.0	11	42.691	0.491	30.5	0.9064	0.0000	SURCHARGED
15 minute summer	S12.1	11	42.629	0.843	59.6	1.3697	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
180 minute summer	S3.7	Hydro-Brake®	S3.8	1.3				
180 minute summer	S3.7	Infiltration		3.8				
120 minute summer	S3.8	5.008	S1.19	3.5	0.669	0.051	1.1443	
120 minute summer	S1.19	Hydro-Brake®	S1.20	7.0				105.0
15 minute summer	S12.2	1.002	S1.8A	79.8	1.244	0.718	0.2952	
15 minute summer	S12.0	1.000	S12.1	29.1	0.972	0.560	1.6468	
15 minute summer	S12.1	1.001	S12.2	48.5	1.528	0.932	1.8757	

Barrett Mahony Consulting	File: SW Network B1.pfd	Page 1
Engineers Ltd.	Network: Catchment B1	20.170
52-54 Lower Sandwith Street	Dirk Kotze	Dundrum Central
Dublin, D02 WR26	15/03/2022	Development

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	5	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	Scotland and Ireland	Connection Type	Level Inverts
M5-60 (mm)	18.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.277	Preferred Cover Depth (m)	1.200
CV	1.000	Include Intermediate Ground	\checkmark
Time of Entry (mins)	4.00	Enforce best practice design rules	\checkmark

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
			(m)				
S15.0	0.000	4.00	45.120	1200	-24.316	-196.731	0.970
S15.1	0.288	4.00	44.610	1200	-43.371	-122.402	0.710
S15.2			44.680	1200	-45.580	-113.725	1.030
S14.0	0.002	4.00	45.060	1200	-41.780	-45.270	1.260
S14.1	0.018	4.00	44.900	1200	-35.355	-53.625	1.175
S14.2	0.195	4.00	44.980	1350	-18.758	-103.519	1.518
S14.3	0.069	4.00	45.330	1350	12.523	-107.910	1.973
S14.4	0.069	4.00	44.980	1200	32.746	-107.762	1.630
S14.5	0.069	4.00	45.350	1350	23.224	-129.481	2.158
S14.6	0.000		45.290	1350	29.894	-150.521	2.172
S14.7	0.110	4.00	44.730	1350	51.629	-143.631	1.688
S14.8	0.028	4.00	45.070	1350	34.561	-89.787	2.216
S11.3	0.250	4.00	45.150	1200	14.194	-33.373	1.950
S11.4	0.250	4.00	45.150	1200	18.279	-46.345	2.050
S11.5	0.001	4.00	44.970	1500	52.736	-84.020	2.180
S11.6	0.001	4.00	44.820	1500	70.955	-78.236	2.094
S10.0	0.000	4.00	45.130	1200	31.862	-1.093	1.130
S10.1	0.000	4.00	45.620	1200	53.582	5.742	1.970
S10.2	0.000	4.00	45.620	1200	63.713	4.833	2.420
S10.3	0.000	4.00	45.630	1200	64.231	-12.328	2.530
S10.4	0.329	4.00	45.590	1200	80.801	-12.301	2.590
S10.5	0.160	4.00	45.410	1200	91.528	-46.216	2.760
S10.6	0.098	4.00	44.500	1500	97.022	-63.935	1.943
S10.7	0.062	4.00	43.890	1500	165.026	-42.384	1.571
S6.4	0.092	4.00	42.550	1200	181.313	7.004	0.350
S10.8			44.220	1500	212.002	-27.557	2.205
OUTB1			43.250	1500	215.937	-39.970	1.278
S8.0	0.033	4.00	43.580	1200	221.375	-109.988	0.780
S23.0	0.051	4.00	44.900	1200	218.641	-81.141	2.100
S8.1	0.086	4.00	43.970	1200	224.677	-80.460	1.370
S7.0	0.033	4.00	44.950	1200	215.716	-53.889	2.350
S7.1	0.086	4.00	44.310	1200	221.124	-48.579	2.310
OUT4			43.250	1200	220.140	-40.010	1.270
S9.0	0.218	4.00	44.800	1200	113.003	-119.211	0.800
S9.1	0.136	4.00	44.800	1200	108.849	-106.174	1.550
S9.2	0.000	4.00	44.780	1200	102.077	-84.600	1.655
OUT5			44.700	1200	98.931	-74.566	1.687

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL				Barrett Ma Engineers 52-54 Lowe Dublin, D0	hony Consul Ltd. er Sandwith 1 2 WR26	ting Street	File: SW Network B1.pfd Network: Catchment B1 Dirk Kotze 15/03/2022				Page 2 20.170 Dundrum Central Development		
			•			Lin	<u>ks</u>			·	•		
	Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)	
	1.000	S15.0	S15.1	76.733	0.600	44.150	43.900	0.250	306.9	225	5.73	50.0	
	1.001	S15.1	S15.2	8.954	0.600	43.900	43.840	0.060	150.0	300	5.84	50.0	
	1.002	S15.2	S14.2	28.698	0.600	43.650	43.507	0.143	200.0	300	6.27	50.0	
	2.000	S14.0	S14.1	10.540	0.600	43.800	43.725	0.075	140.5	300	4.13	50.0	
	2.001	S14.1	S14.2	52.600	0.600	43.725	43.462	0.263	200.0	300	4.92	50.0	
	1.003	S14.2	S14.3	31.596	0.600	43.462	43.357	0.105	300.0	375	6.78	50.0	
	1.004	S14.3	S14.5	24.079	0.600	43.357	43.277	0.080	300.0	375	7.17	50.0	
	3.000	S14.4	S14.5	23.715	0.600	43.350	43.192	0.158	150.0	225	4.37	50.0	
	1.005	S14.5	S14.6	22.072	0.600	43.192	43.118	0.074	300.0	375	7.52	50.0	
	1.006	S14.6	S14.7	22.801	0.600	43.118	43.042	0.076	300.0	375	7.88	50.0	
	1.007	S14.7	S14.8	56.484	0.600	43.042	42.854	0.188	300.0	300	8.93	50.0	
	1.008	S14.8	S11.5	19.068	0.600	42.854	42.790	0.064	300.0	300	9.28	50.0	
	4.000	S11.3	S11.4	13.600	0.600	43.200	43.109	0.091	150.0	225	4.21	50.0	
	4.001	S11.4	S11.5	51.056	0.600	43.100	42.845	0.255	200.0	300	4.98	50.0	
	1.009	S11.5	S11.6	19.115	0.600	42.790	42.726	0.064	300.0	375	9.59	50.0	
	1.010	S11.6	S10.6	29.732	0.600	42.726	42.627	0.099	300.0	375	10.06	50.0	
	5.000	S10.0	S10.1	22.770	0.600	44.000	43.886	0.114	200.0	300	4.34	50.0	
	5.001	S10.1	S10.2	10.172	0.600	43.650	43.599	0.051	200.0	300	4.50	50.0	
	5.002	S10.2	S10.3	17.186	0.600	43.200	43.114	0.086	200.0	300	4.75	50.0	
	5.003	S10.3	S10.4	16.587	0.600	43.100	43.017	0.083	200.0	300	5.00	50.0	
	5.004	S10.4	S10.5	35.571	0.600	43.000	42.822	0.178	200.0	300	5.54	50.0	
	5.005	S10.5	S10.6	18.551	0.600	42.650	42.557	0.093	200.0	300	5.82	50.0	

Name	Vel	Сар	US	DS	Σ Area	Σ Add
	(m/s)	(I/s)	Depth	Depth	(ha)	Inflow
			(m)	(m)		(I/s)
1.000	0.741	29.5	0.745	0.485	0.000	0.0
1.001	1.281	90.6	0.410	0.540	0.288	0.0
1.002	1.108	78.3	0.730	1.173	0.288	0.0
2.000	1.324	93.6	0.960	0.875	0.002	0.0
2.001	1.108	78.3	0.875	1.218	0.020	0.0
1.003	1.041	114.9	1.143	1.598	0.503	0.0
1.004	1.041	114.9	1.598	1.698	0.572	0.0
3.000	1.065	42.3	1.405	1.933	0.069	0.0
1.005	1.041	114.9	1.783	1.797	0.710	0.0
1.006	1.041	114.9	1.797	1.313	0.710	0.0
1.007	0.902	63.8	1.388	1.916	0.820	0.0
1.008	0.902	63.8	1.916	1.880	0.848	0.0
4.000	1.065	42.3	1.725	1.816	0.250	0.0
4.001	1.108	78.3	1.750	1.825	0.500	0.0
1.009	1.041	114.9	1.805	1.719	1.349	0.0
1.010	1.041	114.9	1.719	1.498	1.350	0.0
5.000	1.108	78.3	0.830	1.434	0.000	0.0
5.001	1.108	78.3	1.670	1.721	0.000	0.0
5.002	1.108	78.3	2.120	2.216	0.000	0.0
5.003	1.108	78.3	2.230	2.273	0.000	0.0
5.004	1.108	78.3	2.290	2.288	0.329	0.0
5.005	1.108	78.3	2.460	1.643	0.489	0.0

BN	BARRE CONSUL CIVIL &	TT MAH TING ENGIN STRUCTU	ONY _{Jeers} Jral	Barrett Mal Engineers L 52-54 Lowe Dublin, D02	nony Consulting File: SW Network B1. .td. Network: Catchment er Sandwith Street Dirk Kotze 2 WR26 15/03/2022				pfd Page 3 B1 20.170 Dundrum Central Development						
					. ,		<u>Link</u>	<u>s</u>							
	Name	US	DS	Length	ks (m	im) /	US IL	DS IL	Fall	5		Dia	T Of C	Rain	
	1 011	Node	NO0	e (m)	r		(m)	(m)	(m)	0 7	(1:X)	(mm)	(mins)	(mm/nr)	
	1.011	510.0	510.7	/1.33/		0.600	42.557	42.319	0.23	0 3 1 7		450	11.08	48.5	
	1.012	510.7	510.8	49.260		0.600	42.319	42.155	0.16	4 3		450	11.78	46.9	
	6.000	56.4	510.8	46.220	C	0.600	42.200	42.015	0.18	5 2	250.0	225	4.94	50.0	
	1.013	\$10.8	001	31 13.022	U	0.600	42.015	41.972	0.04	3 3	300.0	225	12.07	46.3	
	7 000	58.0	SQ 1	20 712	C	0 600	12 800	42 600	0.20	0 1	118 6	300	1 28	50.0	
	7.000	30.U	30.1	29.712		0.000	42.000	42.000	0.20	1 1 1		200	4.50	50.0	
	8.000	525.U	58.1 C7 1	0.074		0.600	42.800	42.739	0.00	1 1 1 1		300	4.00	50.0	
	7.001	58.1	57.1	32.078		0.600	42.600	42.279	0.32			300	4.72	50.0	
	9.000	57.0	37.1	7.579		0.600	42.600	42.524	0.07			225	4.10	50.0	
	7.002	57.1	0014	4 8.625	U	0.600	42.000	41.980	0.02	0 4	431.3	300	4.92	50.0	
	10.000	50.0	SO 1	12 602	C	600	11 000	12 962	0 1 2	7 1		275	1 1 2	50.0	
	10.000	59.0 50.1	59.1	15.005		0.000	44.000	43.003	0.13	/ _ c 1		373	4.15	50.0	
	10.001	59.1	39.Z	10 516		0.000	43.230	43.123	0.12	r c	02.0	373	4.41	50.0	
	10.002	39.2	0013	10.510	U	0.000	45.125	45.015	0.11	2	95.9	225	4.34	50.0	
				Name	Vel	Сар	US	DS	ΣΑ	rea	Σ Adc	ł			
					(m/s)	(I/s)	Deptl	h Dept	h (h	a)	Inflov	v			
							(m)	(m)			(I/s)				
				1.011	1.168	185.8	1.493	3 1.12	1 1.9	937	0.0	0			
				1.012	1.168	185.8	1.12	1 1.61	5 1.9	999	0.0	0			
				6.000	0.822	32.7	0.12	5 1.98	0.0	092	0.0	0			
				1.013	0.750	29.8	1.980	0 1.05	3 2.0	091	0.0	D			
				7.000	1.287	91.0	0.48	0 1.07	0 0.0	033	0.0	0			
				8.000	1.572	111.1	1.80	0 0.93	1 0.0	051	0.0	0			
				7.001	1.572	111.1	1.07	0 1.73	1 0.1	170	0.0	0			
				9.000	1.307	52.0	2.12	5 1.56	1 0.0	033	0.0	0			
				7.002	0.751	53.1	2.01	0 0.97	0 0.2	289	0.0	0			
				10.000	1.812	200.1	0.42	5 0.56	2 0.3	318	0.0	0			
				10.001	1.344	148.4	1.17	5 1.28	0 0.4	454	0.0	0			
				10.002	1.349	53.7	1.430	0 1.46	2 0.4	454	0.0	0			
						Sim	ulation	Settings							
		Ra	infall N	Methodology	/ FSR					Skip	Steady	State	х		
				FSR Region	Scot	land ar	nd Irelan	d	Drain D)own	n Time (mins)	240		
				M5-60 (mm)	18.0	000		A	ditiona	al Sto	orage (n	n³⁄ha)	20.0		
				Ratio-R	0.27	7			Check	Discł	narge R	ate(s)	х		
				Summer CV	1.00	00			Check [Disch	arge Vo	olume	х		
			Ar	nalysis Speed	Nor	mal									
						C+	orm D	rations							
		15	60	100	360	זכ			160	101	20 I	7200	10000		
		30	120	240	480	720	144	10 2	880	432 576	50	8640	10080		
Return Period Climate Change Additional Area Additional Flow								l Flow							
				(years)		(CC %)		(A %)		(Q %)			
				5			20		0			0			
				30			20		0			0			
				100			20		0			0			

В	arrett M	ahony Con	sulting	File: SW Networ	k B1.pfd	Page 4			
	ngineers	Ltd.		Network: Catchn	nent B1	20.170			
CIVIL & STRUCTURAL 5	2-54 Low	ver Sandwi	th Street	Dirk Kotze		Dundrum Central			
D	ublin, D(02 WR26		15/03/2022		Development			
		Node S7	.1 Online H	ydro-Brake [®] Conti	rol				
Elan	Valvo	Y		Objective	(HE) Minimico	unstroom storago			
Fidp Replaces Downstread	n Link	x ./		Sump Available		upstream storage			
	vel (m)	42 000		Product Number	× CTL-SHF-0073-2000-0600-2000				
Design Dep	th (m)	0.600	Min Out	let Diameter (m)	0.100				
Design Flo	w (l/s)	2.0	Min Node	Diameter (mm)	1200				
		Node S9	.2 Online H	/dro-Brake [®] Conti	rol				
Flap	Valve	x		Objective	(HE) Minimise	upstream storage			
Replaces Downstream	m Link	√ 		Sump Available	√ 				
Invert Lev	/el (m)	43.125		Product Number	CTL-SHE-0065-	-2000-1125-2000			
Design Dep	th (m)	1.125	Min Out	let Diameter (m)	0.100				
Design Flo	w (l/s)	2.0	Min Node	e Diameter (mm)	1200				
		Node S1	5.1 Online H	ydro-Brake [®] Cont	rol				
Flap	Valve	x		Objective	(HE) Minimise	upstream storage			
Replaces Downstrea	m Link	\checkmark		Sump Available	\checkmark				
Invert Lev	vel (m)	43.900		Product Number	× CTL-SHE-0067-2000-1000-2000				
Design Dep	th (m)	1.000							
Design Flo	w (l/s)	2.0	Min Node	Diameter (mm)	1200				
		Node S14	1.7 Online H	ydro-Brake [®] Cont	rol				
Flan	Valve	x		Ohiective	(HF) Minimise	upstream storage			
Replaces Downstrea	m Link	\checkmark		Sump Available	√				
Invert Lev	vel (m)	43.042		Product Number	CTL-SHE-0093-4000-1100-4000				
Design Dep	th (m)	1.100	Min Out	let Diameter (m)	0.150				
Design Flo	w (l/s)	4.0	Min Node	Diameter (mm)	1200				
		Node S1	L.4 Online H	ydro-Brake [®] Cont	rol				
Flar	Malua			Ohiostivo					
Flap		x				upstream storage			
	n Link	V 12 100				2000 1225 2000			
	th (m)	43.100	Min Out	lot Diamotor (m)	0.075	-2000-1323-2000			
Design Flo	w (l/s)	2.0	Min Node	e Diameter (mm)	1200				
		Node S1) 5 Online H	vdro-Brake® Cont	rol				
		NOUE JI	<u></u>	ydro-brake com					
Flap	Valve	x		Objective	(HE) Minimise	upstream storage			
Replaces Downstrea	m Link	√ 42.650		Sump Available	√ (TL CUE 2005)	2000 1 000 2000			
	/ei (m)	42.650		roduct Number	CIL-SHE-0060-	-2000-1600-2000			
Design Dep	tn (m)	1.600	Min Out	let Diameter (m)	0.075				
Design Flo	w (I/S)	2.0	IVIIN NODE	ameter (mm) וע	1200				
		Node S10	0.8 Online H	ydro-Brake [®] Cont	rol				
Flap	Valve	x		Objective	(HE) Minimise	upstream storage			
Replaces Downstream	m Link	\checkmark		Sump Available	le √				
Invert Lev	vel (m)	42.015		Product Number	r CTL-SHE-0158-1400-1800-1400				
Design Dep	th (m)	1.800 Min Outlet Diameter (m			(m) 0.225				
Design Flo	w (l/s)	14.0	4.0 Min Node Diameter (mm)			1500			

BM	BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL	Barrett Mahony Co Engineers Ltd. 52-54 Lower Sandv Dublin, D02 WR26	nsulting vith Street	File: SW Netw Network: Cato Dirk Kotze 15/03/2022	ork B1.pfd chment B1	Page 5 20.170 Dundrum Developm	Central ent
		<u>Node S</u>	6.4 Online Hy	dro-Brake [®] Co	<u>ntrol</u>		
	F Replaces Downstr Invert I Design D Design I	Hap Valve x ream Link √ Level (m) 42.200 Depth (m) 0.500 Flow (l/s) 2.0	F Min Outl Min Node	Objectiv Sump Availabl Product Numbe et Diameter (mr Diameter (mr	e (HE) Minimise e √ er CTL-SHE-0075- n) 0.100 n) 1200	upstream s 2000-0500	storage -2000
		<u>Node S</u>	7.1 Depth/Are	ea Storage Stru	<u>cture</u>		
	Base Inf Coefficien Side Inf Coefficien	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Fac Poro	ctor 2.0 sity 0.95	Invert I Time to half emp	₋evel (m) ty (mins)	42.000
	Depth (m) 0.000 2	Area Inf Area (m²) (m²) 220.5 0.0	Depth Are (m) (m ²) 0.600 220	a Inf Area 2) (m²) .5 0.0	Depth Area (m) (m²) 0.601 0.0	Inf Area (m²) 0.0	
		<u>Node S</u>	7.1 Depth/Are	ea Storage Stru	cture		
	Base Inf Coefficien Side Inf Coefficien	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Fac Poro	ctor 2.0 sity 0.95	Invert I Time to half emp	₋evel (m) ty (mins)	42.000
	Depth A (m) (0.000 18	Area Inf Area (m²) (m²) 330.0 0.0	Depth Ard (m) (m 0.065 183	ea Inf Area ²) (m ²) 0.0 0.0	Depth Area (m) (m ²) 0.066 0.0	Inf Area (m²) 0.0	
		<u>Node S</u>	9.1 Depth/Are	ea Storage Stru	cture		
	Base Inf Coefficien Side Inf Coefficien	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Fac Poro	ctor 2.0 sity 1.00	Invert I Time to half emp	₋evel (m) ty (mins)	43.250
	Depth (m) 0.000 2	Area Inf Area (m²) (m²) 267.0 0.0	Depth Are (m) (m ² 1.050 267	a Inf Area 2) (m²) .0 0.0	Depth Area (m) (m²) 1.051 0.0	Inf Area (m ²) 0.0	
		<u>Node S</u>	9.1 Depth/Are	ea Storage Stru	<u>icture</u>		
	Base Inf Coefficien Side Inf Coefficien	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Fac Poro	ctor 2.0 sity 0.95	Invert I Time to half emp	₋evel (m) ty (mins)	43.250
	Depth A (m) (0.000 20	Area Inf Area (m²) (m²) 021.0 0.0	Depth Are (m) (m 0.065 202	ea Inf Area ²) (m ²) 1.0 0.0	Depth Area (m) (m²) 0.066 0.0	Inf Area (m²) 0.0	
		Node S1	5.1 Depth/Ar	ea Storage Stru	ucture		
	Base Inf Coefficien Side Inf Coefficien	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Fac Poro	ctor 2.0 sity 0.30	Invert I Time to half emp	₋evel (m) ty (mins)	43.900
	Depth (m) 0.000 9	Area Inf Area (m²) (m²) 948.0 0.0	Depth Are (m) (m ² 0.700 948	a Inf Area 2) (m²) .0 0.0	Depth Area (m) (m²) 0.701 0.0	Inf Area (m²) 0.0	
		<u>Node S1</u>	4.7 Depth/Ar	ea Storage Stru	ucture		
	Base Inf Coefficien Side Inf Coefficien	nt (m/hr) 0.26400 nt (m/hr) 0.26400	Safety Fac Poro	ctor 5.0 sity 0.60	Invert I Time to half emp	₋evel (m) ty (mins)	43.042 0

		Barrett Mahony C	onsulting	File: SW Netw	work B1.pfd	Page 6)		
RM	CONSULTING ENGINEERS	Engineers Ltd.		Network: Cat	tchment B1	20.170			
	CIVIL & STRUCTURAL	52-54 Lower Sand	with Street	Dirk Kotze		Dundrum	ı Central		
		Dublin, D02 WR26	5	15/03/2022		Developm	nent		
	–								
	Depth	Area Inf Area	Depth Ar	ea Inf Area	Depth Are	a Inf Area			
	(m)	(m ⁻) (m ⁻)	(m) (m	1°) (m°)	(m) (m ⁻) (m²)			
	0.000	640.0 640.0	1.100 640	J.0 /65.0	1.101 0.	0 765.0			
		<u>Node S</u>	11.4 Depth/A	rea Storage Str	ructure				
	Base Inf Coefficie	nt (m/hr) 0.00000	Safety Fa	ctor 2.0	Inve	rt Level (m)	43.100		
	Side Inf Coefficie	nt (m/hr) 0.00000	Pore	osity 1.00	Time to half en	npty (mins)	2760		
	Depth	Area Inf Area	Depth Ar	ea Inf Area	Depth Are	a Inf Area			
	(m)	(m²) (m²)	(m) (m	1²) (m²)	(m) (m²) (m²)			
	0.000	218.0 0.0	1.325 218	8.0 0.0	1.326 0.	0.0			
		<u>Node S</u>	11.4 Depth/A	rea Storage Str	ructure				
	Base Inf Coefficie	nt (m/hr) 0.00000	Safety Fa	ctor 2.0	Inve	rt Level (m)	43.100		
	Side Inf Coefficie	nt (m/hr) 0.00000	Pore	osity 0.95	Time to half en	npty (mins)			
	Depth	Area Inf Area	Depth A	rea Inf Area	Depth Ar	ea Inf Area	a		
	(m)	(m ²) (m ²)	(m) (n	n ²) (m ²)	(m) (m	1 ²) (m ²)			
	0.000 3	985.0 0.0	0.065 398	85.0 0.0	0.066 0).0 0.0)		
		Node S	10.5 Depth/A	rea Storage Str	ructure				
			-	-					
	Base Inf Coefficie	nt (m/hr) 0.00000	Safety Fa	ctor 2.0	Inve	rt Level (m)	42.650		
	Side Inf Coefficie	nt (m/hr) 0.00000	Pore	osity 0.95	Time to half en	npty (mins)			
	Depth	Area Inf Area	Depth A	rea Inf Area	Depth Ar	ea Inf Area	3		
	(m)	(m²) (m²)	(m) (n	n²) (m²)	(m) (m	ո²) (m²)			
	0.000 1	.025.0 0.0	0.065 102	25.0 0.0	0.066 0).0 0.0)		
		<u>Node S</u>	10.5 Depth/A	rea Storage Str	ructure				
	Base Inf Coefficie	nt(m/hr) = 0.26400	Safety Fa	octor 10.0	Inve	rt Level (m)	42 650		
	Side Inf Coefficie	nt (m/hr) = 0.26400	Por	0.001 ± 0.00	Time to half en	nnty (mins)	42.030		
	side in coemere	ine (ini) ini) 0.20400		0.00		ipty (iiiiis)			
	Depth	Area Inf Area	Depth Ar	ea Inf Area	Depth Are	a Inf Area			
	(m)	(m ²) (m ²)	(m) (m	1 ²) (m ²)	(m) (m ²) (m²)			
	0.000	385.0 385.0	1.100 38	5.0 489.0	1.101 0.	0 489.0			
		<u>Node S</u>	6.4 Depth/Ar	ea Storage Str	<u>ucture</u>				
	Base Inf Coefficie	nt (m/hr) 0.26400	Safety Fa	ctor 2.0	Inve	rt Level (m)	42.250		
	Side Inf Coefficie	nt (m/hr) 0.26400	Pore	osity 1.00	Time to half en	npty (mins)			
	Depth	Area Inf Area	Depth Ar	ea Inf Area	Depth Are	a Inf Area			
	(m)	(m²) (m²)	(m) (m	1 ⁺) (m ²)	(m) (m ²) (m²)			
	0.000	300.0 300.0	0.400 340	0.0 330.0	0.401 0.	U 330.0			

		-		1.1			1				
		Barrett	Mahony Con	sulting	File:	SW Netw	ork B1.pfd		Page 7		
$Q \Lambda I$	CONSULTING ENGINEERS	Enginee	rs Ltd.		Netw	ork: Cato	chment B1		20.170		
	CIVIL & STRUCTURAL	52-54 Lo	ower Sandwi	th Street	Dirk	Kotze			Dundrum	Central	
		Dublin,	D02 WR26		15/0	3/2022			Developm	ient	
		,			,	,			•		
	Results f	or 5 veau	· +20% CC Cr	itical Storr	n Durat	ion. Low	est mass b	alance:	99.85%		
	<u>itesuits i</u>		120/0 00 01		<u>III D'ullut</u>			anamee.	<u>5510570</u>		
	Node Event		Dook		Donth	Inflow	Nada	Floo	4 C+	atus	
	Noue Event	03		Level	Jeptin (m)	(1/-)	Noue	FI00	u 51	alus	
	000 1	NOC	e (mins)	(m)	(m)	(I/S)		(m ⁻)			
	960 minute summe	r S15.	0 675	44.233	0.083	0.2	0.0938	0.000	JU UK		
	960 minute summe	r \$15.	1 675	44.233	0.333	11.0	97.7573	0.000	0 SURCH	HARGED	
	15 minute summer	S15.	.2 11	43.693	0.043	2.1	0.0484	0.000	00 OK		
	15 minute summer	S14.	.0 10	43.817	0.017	0.6	0.0200	0.000	00 OK		
	15 minute summer	S14.	1 10	43.781	0.056	6.4	0.0806	0.000	00 OK		
	15 minute summer	S14.	2 10	43.683	0.221	68.5	0.8834	0.000	00 OK		
	15 minute summer	S14.	3 11	43.625	0.268	86.2	0.5713	0.000	00 OK		
	15 minute summer	S14.	4 10	43.596	0.246	22.1	0.4862	0.000	0 SURCH	HARGED	
	15 minute summer	S14.	5 11	43.546	0.354	124.7	0.7335	0.000	0 ОК		
	15 minute summer	S14.	6 10	43.429	0.311	124.3	0.4450	0.000	0 ОК		
	180 minute summe	r S14.	7 128	43,286	0.244	61.4	94,5101	0.000	00 OK		
			, 120	10.200	0.2	01.1	5 1.5101	0.000			
	20 minute summer	S1/	Q 1Q	12 020	0 085	10 5	0 1/127	0 000			
	15 minute summer	C11	2 10	42.555	0.005	70.0	1 0775	0.000			
	7200 minute summer	07 C11	.5 IU	43./33	0.555	79.9	1.9775	0.000			
	7200 minute summ	er SII.	4 4560	43.479	0.379	5.2	331.9063	0.000		ARGED	
	30 minute summer	511.	5 18	42.869	0.079	10.8	0.1409	0.000	JU UK		
	30 minute summer	S11.	6 19	42.805	0.079	10.9	0.1401	0.000	JU OK		
	15 minute summer	S10.	.0 1	44.000	0.000	0.0	0.0000	0.000	00 OK		
	15 minute summer	S10.	.1 1	43.650	0.000	0.0	0.0000	0.000	00 OK		
	15 minute summer	S10.	2 11	43.357	0.157	6.1	0.1781	0.000	00 OK		
	15 minute summer	S10.	.3 11	43.355	0.255	11.6	0.2881	0.000	00 OK		
	15 minute summer	S10.	4 11	43.348	0.348	105.1	1.2790	0.000	0 SURCH	HARGED	
	960 minute summe	r S10.	5 630	43.038	0.388	18.7	154.3290	0.000	00 <mark>SURC</mark> ł	HARGED	
	60 minute summer	S10.	6 42	42.707	0.150	29.8	0.4151	0.000	0 ОК		
	Link Event	US	Link	DS	Outfl	ow Vel	ocity Flov	w/Cap	Link	Discharge	
	(Unstream Denth)	Node		Node	(1/s	a) (n	n/s)	n, cap	Vol (m ³)	Vol (m ³)	
٥	60 minute summer	S15 0	1 000	S15 1	(1, 5	∩, (" ∩, _(007	-0.006	2 03/0		
ر م	60 minute summer	S15.0	Hydro-Brake	S15.1		0.2 (20	5.007	0.000	2.0345		
1	5 minute summer	C15 2	1 002	c1/ 2		2.0	1456	0 020	0 6096		
1	5 minute summer	515.2	2,000	514.2			122	0.030	0.0500		
1 A	5 minute summer	514.0	2.000	514.1			J.123	0.006	0.0503		
1	5 minute summer	514.1	2.001	514.2	6	0.I (J.192	0.078	1.7008		
1	5 minute summer	514.2	1.003	514.3	6	4.2 (J.853	0.558	2.3908		
1	5 minute summer	\$14.3	1.004	\$14.5	8	3.4 1	1.081	0.726	2.0344		
1	5 minute summer	S14.4	3.000	S14.5	2	0.8 (0.523	0.491	0.9432		
1	.5 minute summer	S14.5	1.005	S14.6	12	4.3 1	1.214	1.082	2.2665		
1	5 minute summer	S14.6	1.006	S14.7	12	7.6 2	2.253	1.110	1.2845		
1	.80 minute summer	S14.7	Hydro-Brake	e® \$14.8		3.9					
1	.80 minute summer	S14.7	Infiltration			9.7					
3	0 minute summer	S14.8	1.008	S11.5	1	0.4 (0.670	0.164	0.2973		
1	5 minute summer	S11.3	4.000	S11.4	7	8.3 1	1.968	1.848	0.5354		
7	200 minute summer	S11.4	Hydro-Brake	e® S11.5		1.7					
3	0 minute summer	S11.5	1.009	S11.6	1	0.6 0	0.644	0.092	0.3201		
3	0 minute summer	S11.6	1.010	S10.6	1	0.7 (0.673	0.093	0.4732		
1	5 minute summer	S10.0	5.000	S10.1		0.0 0	0.000	0.000	0.0000		
1	5 minute summer	S10.1	5.001	S10.2		0.0 (0.000	0.000	0.0000		
1	5 minute summer	S10.2	5.002	S10 R	_	6.1 -0).262	-0.077	0 8424		
1	5 minute summer	S10 R	5 003	S10.0	1	39 () 277	0 178	1 1120		
1	5 minute summer	S10 /	5 004	۰.4 ۲۱۸ ۲	0	2.2 1	1 352	1 101	2 2172		
1	60 minute summer	510.4 S10 5	Hydro-Brake	510.5 ۵® دا10 د	9	15		1.1JI	2.31/2		
9	60 minute summer	510.5 510.5	Infiltration	210.0		1.J 2 1					
9	oo minute summer	210.2	mintration			J.1					

Flow+ v10.3 Copyright © 1988-2022 Causeway Technologies Ltd

29.5

0.755

0.159

6.6912

S10.7

60 minute summer

S10.6 1.011

	Barrett Mahony Consulting				File: SW Network B1.pfd				Page	Page 8		
	Engineers Ltd.				Network: Catchment B1				20.1	20.170		
	52-5	4 Lower Sa	andwit	h Street	Dirk Kotze				Dundrum Central			
	Dublin, D02 WR26				15/03/2022				Dev	Development		
										-		
<u>Results</u>	Results for 5 year +20% CC Critical Storm Duration. Lowest mass balance: 99.85%											
Node Event		US		Level	Depth	Inflo	ow N	ode	Flood	St	Status	
	Node		(mins) (m)		(m)	(m) (l/s) Vo		∣(m³)	(m³)			
60 minute summer	S10	.7	41	42.704	0.385	42	2.5 0	.9832	0.0000) OK		
60 minute summer	0 minute summer S6.4		41	42.286	0.086	22	2.0 11	.4169	0.0000) OK		
30 minute summer	summer S10.8		25	42.720	0.705	4().9 1	.2449	0.0000) SURCI	HARGED	
15 minute summer OU ⁻		B1	1	41.972	0.000	14	4.0 0	.0000	0.0000	ок		
15 minute summer	S8.0		10	42.868	0.068	10	0.6 0	.1352	0.0000) OK		
15 minute summer	S23.0		10	42.886	0.086	16	5.3 0	.1384	0.0000) OK		
15 minute summer	S8.1		10	42.755	0.155	54	1.4 0	.3699	0.0000) OK		
15 minute summer	S7.0		10	42.674	0.074	10	0.6 0	.1049	0.0000) OK		
2880 minute summer	r S7.1		1800	42.141	0.141	Į,	5.3 143	.5980	0.0000) OK		
15 minute summer	OUT	4	1	41.980	0.000	(0.2 0	.0000	0.0000) OK		
15 minute summer	S9.0)	10	44.187	0.187	69	9.7 1	.2313	0.0000) ОК		
15 minute summer 10.000		00:50%	10	44.139	0.207	101	1.7 0	.0000	0.0000	ОК		
2880 minute summer			1980	43.565	0.315	1(0.2 210	.8604	0.0000	ОК		
2880 minute summer	S9.2		1920	43.561	0.436	ŗ	5.0 0	.4936	0.0000) SURCH	HARGED	
15 minute summer	OUT5		1	43.013	0.000	-	1.3 0	3 0.0000) OK		
Link Event	US	Link		DS	Outfl	ow	Velocity	Flow	/Cap	Link	Discharge	
(Upstream Depth) N	ode			Node	(I/s)	(m/s)			Vol (m ³)	Vol (m ³)	
60 minute summer Si	10.7	1.012		S10.8	34	, 4.7	0.697	C).187	7.4565		
60 minute summer S	6.4	Hydro-Bra	ake®	S10.8	:	1.4						
60 minute summer S	6.4	, Infiltratio	n		-	7.8						
30 minute summer S	10.8	Hydro-Bra	ake®	OUTB1	14	4.0					64.3	
15 minute summer S	8.0	7.000		S8.1	10	0.6	0.443	C).116	0.7246		
15 minute summer S2	23.0	8.000		S8.1	1	6.3	1.060	C).147	0.0935		
15 minute summer S	8.1	7.001		S7.1	54	4.0	1.528	C	.486	1.1333		
15 minute summer S	7.0	9.000		S7.1	10	0.6	0.981	C	.204	0.0819		
2880 minute summer S	7.1	Hydro-Bra	ake®	OUT4	:	2.0					155.3	
15 minute summer S	9.0	10.000		10.000:50%	6	9.7	1.189	C	.348	0.4012		
15 minute summer S	9.0	10.000		S9.1	10	1.7	1.742	C	.508	0.3995		
2880 minute summer S	9.1	10.001		S9.2	!	5.0	0.160	C	0.034	2.3657		

1.8

236.0

2880 minute summer S9.2 Hydro-Brake[®] OUT5
BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL
 Barrett Mahony Consulting Engineers Ltd.
 File: SW Network B1.pfd
 Page 9

 Dublin, D02 WR26
 Network: Catchment B1
 20.170

 Dirk Kotze
 Dundrum Central

 Dublin, D02 WR26
 15/03/2022
 Development

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
1440 minute summer	S15.0	1050	44.404	0.254	0.3	0.2878	0.0000	SURCHARGED
1440 minute summer	S15.1	1050	44.404	0.504	11.3	148.0664	0.0000	FLOOD RISK
15 minute summer	S15.2	11	43.855	0.205	12.4	0.2318	0.0000	ОК
15 minute summer	S14.0	12	43.870	0.070	4.5	0.0816	0.0000	OK
15 minute summer	S14.1	12	43.870	0.145	16.5	0.2084	0.0000	ОК
15 minute summer	S14.2	11	43.864	0.402	99.5	1.6104	0.0000	SURCHARGED
15 minute summer	S14.3	11	43.795	0.438	110.3	0.9336	0.0000	SURCHARGED
15 minute summer	S14.4	10	43.811	0.461	32.4	0.9114	0.0000	SURCHARGED
15 minute summer	S14.5	11	43.697	0.505	161.7	1.0468	0.0000	SURCHARGED
15 minute summer	S14.6	10	43.509	0.391	162.3	0.5601	0.0000	SURCHARGED
240 minute summer	S14.7	172	43.434	0.392	73.9	151.7302	0.0000	SURCHARGED
120 minute summer	S14.8	80	43.049	0.195	9.9	0.3283	0.0000	ОК
15 minute summer	S11.3	10	44.173	0.973	117.3	3.5951	0.0000	SURCHARGED
8640 minute summer	S11.4	5520	43.988	0.888	5.7	444.8205	0.0000	SURCHARGED
120 minute summer	S11.5	80	43.048	0.258	11.3	0.4585	0.0000	ОК
120 minute summer	S11.6	82	43.048	0.322	15.4	0.5725	0.0000	ОК
15 minute summer	S10.0	1	44.000	0.000	0.0	0.0000	0.0000	OK
15 minute summer	S10.1	11	43.754	0.104	5.3	0.1173	0.0000	OK
15 minute summer	S10.2	11	43.744	0.544	7.9	0.6149	0.0000	SURCHARGED
15 minute summer	S10.3	11	43.740	0.640	18.8	0.7243	0.0000	SURCHARGED
15 minute summer	S10.4	10	43.727	0.727	154.4	2.6708	0.0000	SURCHARGED
960 minute summer	S10.5	675	43.349	0.699	25.8	226.8687	0.0000	SURCHARGED
120 minute summer	S10.6	80	43.054	0.497	32.6	1.3802	0.0000	SURCHARGED
Link Event L	JS	Link	DS	Outfl	ow Vel	ocity Flow	/Cap	Link Discharg

LINKEVENU	03	LINK	03	Outhow	velocity	гюw/сар	LINK	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
1440 minute summer	S15.0	1.000	S15.1	-0.3	-0.012	-0.010	3.0518	
1440 minute summer	S15.1	Hydro-Brake®	S15.2	2.0				
15 minute summer	S15.2	1.002	S14.2	11.3	0.468	0.145	1.7463	
15 minute summer	S14.0	2.000	S14.1	4.7	-0.219	0.050	0.2437	
15 minute summer	S14.1	2.001	S14.2	24.1	0.404	0.308	2.7391	
15 minute summer	S14.2	1.003	S14.3	88.0	0.873	0.766	3.4849	
15 minute summer	S14.3	1.004	S14.5	110.1	1.126	0.958	2.6558	
15 minute summer	S14.4	3.000	S14.5	31.7	0.798	0.749	0.9432	
15 minute summer	S14.5	1.005	S14.6	162.3	1.472	1.412	2.4345	
15 minute summer	S14.6	1.006	S14.7	163.4	2.148	1.422	1.6323	
240 minute summer	S14.7	Hydro-Brake®	S14.8	4.0				
240 minute summer	S14.7	Infiltration		10.0				
120 minute summer	S14.8	1.008	S11.5	9.8	0.656	0.154	1.0768	
15 minute summer	S11.3	4.000	S11.4	112.3	2.825	2.653	0.5354	
8640 minute summer	S11.4	Hydro-Brake®	S11.5	1.7				
120 minute summer	S11.5	1.009	S11.6	13.4	0.633	0.116	1.7335	
120 minute summer	S11.6	1.010	S10.6	10.6	0.662	0.092	3.1376	
15 minute summer	S10.0	5.000	S10.1	0.0	0.000	0.000	0.0000	
15 minute summer	S10.1	5.001	S10.2	5.6	0.406	0.072	0.2808	
15 minute summer	S10.2	5.002	S10.3	10.0	-0.325	0.127	1.2102	
15 minute summer	S10.3	5.003	S10.4	22.5	0.362	0.287	1.1680	
15 minute summer	S10.4	5.004	S10.5	136.3	1.937	1.741	2.4559	
960 minute summer	S10.5	Hydro-Brake®	S10.6	1.5				
960 minute summer	S10.5	Infiltration		3.3				
120 minute summer	S10.6	1.011	S10.7	31.7	0.690	0.171	11.3029	

Flow+ v10.3 Copyright © 1988-2022 Causeway Technologies Ltd

Barrett Mahony Consulting File: SW Network B1.pfd Page 10 BARRETT MAHONY Engineers Ltd. Network: Catchment B1 20.170 CONSULTING ENGINEERS CIVIL & STRUCTURAL **Dundrum** Central 52-54 Lower Sandwith Street Dirk Kotze Dublin, D02 WR26 15/03/2022 Development Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 99.85% Node Event US Peak Level Depth Inflow Node Flood Status Node (mins) (m) (m) (I/s) Vol (m³) (m³) 120 minute summer S10.7 43.047 0.728 45.2 1.8598 0.0000 80 SURCHARGED 60 minute summer S6.4 41 42.303 0.103 31.1 16.8533 0.0000 ОК 120 minute summer S10.8 82 43.044 1.029 24.4 1.8177 0.0000 **SURCHARGED** 15 minute summer OUTB1 1 41.972 0.000 14.0 0.0000 0.0000 OK 15 minute summer S8.0 42.883 0.083 15.5 0.1638 0.0000 OK 10 15 minute summer S23.0 10 42.906 0.106 24.0 0.1716 0.0000 OK 0.200 15 minute summer S8.1 10 42.800 79.8 0.4778 0.0000 OK 15 minute summer S7.0 10 42.692 0.092 15.5 0.1301 0.0000 ОК 2880 minute summer S7.1 1920 42.388 0.388 7.0 195.8463 0.0000 **SURCHARGED** 41.980 OUT4 0.000 0.0000 0.0000 ОК 15 minute summer 1 0.3 15 minute summer S9.0 10 44.244 0.244 102.3 1.6048 0.0000 OK 10.000:50% 44.198 0.266 0.0000 15 minute summer 10 149.4 0.0000 OK 2880 minute summer S9.1 2100 43.930 0.680 12.1 309.1609 0.0000 **SURCHARGED SURCHARGED** 2880 minute summer S9.2 2160 43.938 0.813 5.3 0.9194 0.0000 OUT5 43.013 0.000 1.8 0.0000 0.0000 ОК 15 minute summer 1 Outflow US Link DS Velocity Flow/Cap Link Event Link Discharge (Upstream Depth) Node Node (I/s) (m/s) Vol (m³) Vol (m³) S10.8 0.685 0.131 7.8049 120 minute summer S10.7 1.012 24.4 60 minute summer S6.4 Hydro-Brake® S10.8 1.3 60 minute summer S6.4 Infiltration 11.0

15 minute summer	S8.0	7.000	S8.1	15.5	0.478	0.170	0.9772	
15 minute summer	S23.0	8.000	S8.1	24.0	1.170	0.216	0.1247	
15 minute summer	S8.1	7.001	S7.1	79.4	1.662	0.715	1.5325	
15 minute summer	S7.0	9.000	S7.1	15.5	1.081	0.298	0.1087	
2880 minute summer	S7.1	Hydro-Brake®	OUT4	2.0				205.3
15 minute summer	S9.0	10.000	10.000:50%	102.4	1.283	0.512	0.5459	
15 minute summer	S9.0	10.000	S9.1	149.4	1.904	0.747	0.5365	
2880 minute summer	S9.1	10.001	S9.2	5.3	0.162	0.036	2.4940	
2880 minute summer	S9.2	Hydro-Brake®	OUT5	1.8				236.4

14.0

168.7

OUTB1

120 minute summer

S10.8

Hydro-Brake[®]

Barrett Mahony Consulting	File: SW Network B1.pfd	Page 11
Engineers Ltd.	Network: Catchment B1	20.170
52-54 Lower Sandwith Street	Dirk Kotze	Dundrum Central
Dublin, D02 WR26	15/03/2022	Development

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.85%

Node Event	US Noc	Peak e (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	atus
960 minute summer	S15	0 930	44.580	0.430	0.5	0.4866	0.0000	SURCH	HARGED
960 minute summer	S15	1 930	44.580	0.680	18.8	199.6666	0.0000	FLOOD	O RISK
15 minute summer	S15	2 11	44.268	0.618	23.2	0.6986	0.0000	SURCH	HARGED
15 minute summer	S14	0 11	44.201	0.401	23.4	0.4659	0.0000	SURCH	HARGED
15 minute summer	S14	1 11	44.198	0.473	53.9	0.6800	0.0000	SURCH	HARGED
15 minute summer	S14	2 11	44.269	0.807	124.7	3.2270	0.0000	SURCH	HARGED
15 minute summer	S14	3 11	44 136	0 779	145 5	1 6594	0.0000	SURCE	HARGED
15 minute summer	S14	4 11	44 067	0 717	42.1	1 4191	0,0000	SURCH	HARGED
15 minute summer	S14	5 11	43 960	0.768	207.0	1 5915	0.0000	SURCE	
15 minute summer	S14	6 11	43.500	0.700	207.0	0 7416	0.0000	SURCE	
180 minute summer	S14	7 152	43.558	0.510	110 7	207 2697	0.0000	SURCE	
100 minute summer	514	, 152	43.370	0.550	110.7	207.2037	0.0000	Jonei	WINGED
60 minute summer	S14	.8 41	43.702	0.848	15.5	1.4274	0.0000	SURCH	HARGED
15 minute summer	S11	.3 10	44.684	1.484	152.6	5.4835	0.0000	SURCH	HARGED
7200 minute summe	er S11	4 4680	44.362	1.262	7.9	527.5642	0.0000	SURCH	HARGED
60 minute summer	S11	5 41	43.720	0.930	50.5	1.6515	0.0000	SURCH	HARGED
60 minute summer	S11	6 41	43.691	0.965	16.2	1.7155	0.0000	SURCH	HARGED
15 minute summer	S10	0 11	44.144	0.144	3.7	0.1630	0.0000	OK	
15 minute summer	S10	1 11	44.102	0.452	15.3	0.5113	0.0000	SURCH	HARGED
15 minute summer	S10	2 11	44.094	0.894	31.0	1.0110	0.0000	SURCH	HARGED
15 minute summer	S10	.3 10	44.089	0.989	40.2	1.1187	0.0000	SURCH	HARGED
15 minute summer	S10	4 10	44.075	1.075	200.9	3.9471	0.0000	SURCH	HARGED
960 minute summer	S10	.5 690	43.634	0.984	31.8	293.3784	0.0000	SURCH	HARGED
60 minute summer	S10	6 40	43.689	1.132	72.1	3.1424	0.0000	SURCH	HARGED
Link Event	US	Link	DS	Outflo	w Vel	ocity Flov	w/Cap	Link	Discharge
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflo (I/s)	ow Vel (n	ocity Flov n/s)	w/Cap	Link /ol (m³)	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer	US Node S15.0	Link 1.000	DS Node S15.1	Outflo (I/s) -0	ow Vel (n).5 -0	ocity Flo v n /s)).015	w /Cap \ -0.016	Link /ol (m³) 3.0518	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer	US Node S15.0 S15.1	Link 1.000 Hydro-Brak	DS Node S15.1 e® S15.2	Outflo (I/s) -0 2	ow Vel (n 0.5 -(2.0	ocity Flow n/s)).015	w/Cap -0.016	Link /ol (m³) 3.0518	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2	Link 1.000 Hydro-Brak 1.002	DS Node S15.1 e® S15.2 S14.2	Outflo (I/s) -0 2 -21	bw Vel 0.5 -(n 2.0 1.6 (ocity Flov n/s)).015).473	w/Cap -0.016 -0.276	Link /ol (m³) 3.0518 2.0209	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0	Link 1.000 Hydro-Brak 1.002 2.000	DS Node S15.1 e® S15.2 S14.2 S14.1	Outflo (I/s) -0 2 -21 -22	Ow Vel 0.5 -0 2.0 -0 2.6 -0 2.2 -0	ocity Flow n/s) 0.015 0.473 0.402	w/Cap -0.016 -0.276 -0.237	Link /ol (m³) 3.0518 2.0209 0.7422	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1	Link 1.000 Hydro-Brak 1.002 2.000 2.001	DS Node S15.1 s15.2 S14.2 S14.2 S14.1 S14.2	Outflo (I/s) -0 2 -21 -22 -43	ow Vel 0.5 -0 2.0 -0 2.2 -0 3.0 -0	ocity Flow n/s) 0.015 0.473 0.402 0.613	w/Cap -0.016 -0.276 -0.237 -0.549	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003	DS Node S15.1 S15.2 S14.2 S14.2 S14.1 S14.2 S14.3	Outflo (I/s) -0 2 -21 -22 -43 110	ow Vel 0.5 -0 2.0 -0 2.2 -0 3.0 -0 0.7 1	ocity Flow n/s) 0.015 0.473 0.402 0.613 1.004	w/Cap -0.016 -0.276 -0.237 -0.549 0.963	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.3 S14.5	Outflo (I/s) -0 2 -21 -22 -43 110 138	ow Vel 0.5 -0 2.0 -0 2.6 0 2.2 -0 3.0 -0 0.7 1 3.6 1	ocity Flow n/s)).015).473).402).613 1.004 1.257	w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000	DS Node S15.1 S15.2 S14.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5	Outflo (I/s) -0 2 -21 -22 -43 110 138 37	ow Vel 0.5 -0 2.0 -0 1.6 0 2.2 -0 3.0 -0 0.7 1 3.6 1 7.2 0	ocity Flow n/s)).015).473).473).402).613 1.004 1.257).936	w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005	DS Node S15.1 S15.2 S14.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.5 S14.6	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201	ow Vel 0.5 -0 2.0 -0 2.6 -0 2.2 -0 3.0 -0 3.6 1 7.2 0 1.8 1	ocity Flow n/s)).015).473).402).613 1.004 1.257).936 1.830	w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.3 S14.5 S14.5 S14.6 S14.7	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198	ow Vel 0.5 -0 2.0 -0 2.2 -0 3.0 -0 3.6 1 7.2 0 1.8 1 3.7 2	ocity Flow n/s) 0.015 0.473 0.402 0.613 1.004 1.257 0.936 1.830 2.258	w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak	DS Node S15.1 S15.2 S14.2 S14.2 S14.3 S14.5 S14.5 S14.5 S14.5 S14.6 S14.7 e® S14.8	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4	W Vel 0.5 -0 2.0 -0 2.2 -0 3.6 1 7.2 0 1.8 1 3.7 2 1.0 -0	ocity Flow n/s) 0.473 0.402 0.613 1.004 1.257 0.936 1.830 2.258	w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 180 minute summer 180 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak Infiltration	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.5 S14.6 S14.7 re® S14.8	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 10	ow Vel 0.5 -0 2.0 -0 2.2 -0 3.6 1 7.2 0 1.8 1 3.7 2 4.0 0.2	ocity Flow n/s)).015).473).402).613 1.004 1.257).936 1.830 2.258	w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 180 minute summer 180 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.8	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak Infiltration 1.008	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.6 S14.6 S14.7 e® S14.8 S11.5	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 10 15	ow Vel 0.5 -0 2.0 -0 2.6 0 2.7 -0 3.6 1 7.2 0 1.8 1 3.7 2 4.0 0 0.2 -0	ocity Flow n/s)).015).473).402).613 1.004 1.257).936 1.830 2.258	w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729 0.250	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017 1.3428	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 180 minute summer 180 minute summer 180 minute summer 150 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.8 S11.3	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak Infiltration 1.008 4.000	DS Node S15.1 S15.2 S14.2 S14.2 S14.3 S14.5 S14.5 S14.5 S14.6 S14.7 e® S14.8 S11.5 S11.4	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 10 15 142	W Vel 0.5 -0 2.0 -0 2.6 -0 2.6 -0 3.6 1 7.2 0 1.8 1 3.7 2 1.8 1 3.7 2 1.8 1 3.7 2 1.8 1 3.7 2 1.8 1 3.7 2 1.8 1 3.7 2 1.8 1 3.7 2 1.8 1 3.7 2 1.0 2 1.2 1 3.9 0 2.1 3	ocity Flow n/s) 0.015 0.473 0.402 0.613 1.004 1.257 0.936 1.830 2.258 0.738 3.574	w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729 0.250 3.356	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017 1.3428 0.5354	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 180 minute summer 180 minute summer 180 minute summer 200 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak Infiltration 1.008 4.000 Hydro-Brak	DS Node S15.1 S15.2 S14.2 S14.2 S14.3 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 e® S14.8 S11.5 S11.4 e® S11.5	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 10 15 142 2	ow Vel 0.5 -0 2.0 -0 2.6 -0 2.6 -0 2.7 1 3.6 1 7.2 0 1.8 1 3.7 2 1.8 1 3.7 2 1.0 -0 2.9 0 2.1 3 2.0 -0	ocity Flow n/s) 0.015 0.473 0.402 0.613 1.004 1.257 0.936 1.830 2.258 0.738 3.574	w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729 0.250 3.356	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017 1.3428 0.5354	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 180 minute summer 180 minute summer 180 minute summer 190 minute summer 190 minute summer 190 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak Infiltration 1.008 4.000 Hydro-Brak 1.009	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 ce® S14.8 S11.5 S11.4 e® S11.5 S11.4	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 100 15 142 2 2 -41	ow Vel 0.5 -0 2.0 -0 2.6 0 2.2 -0 3.6 1 7.2 0 1.8 1 3.7 2 6.9 0 2.1 3 2.0 -0	ocity Flow n/s) 0.015 0.473 0.402 0.613 1.004 1.257 0.936 1.830 2.258 0.738 3.574	w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729 0.250 3.356 -0.359	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017 1.3428 0.5354 2.1083	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 180 minute summer 180 minute summer 180 minute summer 190 minute summer 200 minute summer 60 minute summer 60 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak Infiltration 1.008 4.000 Hydro-Brak 1.009 1.010	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 ce® S11.8 S11.5 S11.4 e® S11.5 S11.6 S10.6	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 10 15 142 2 -41 14	ow Vel 0.5 -0 2.0 -0 1.6 0 2.2 -0 3.6 1 7.2 0 1.8 1 3.7 2 0.2 -0 1.8 1 3.7 2 1.0 -0 2.1 3 2.0 -0 1.2 0 1.2 0	ocity Flow n/s) 0.015 0.473 0.402 0.613 0.402 0.613 0.004 1.257 0.936 1.830 2.258 0.738 3.574 0.710 0.693	w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729 0.250 3.356 -0.359 0.124	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017 1.3428 0.5354 2.1083 3.2794	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 180 minute summer 180 minute summer 190 minute summer 200 minute summer 60 minute summer 60 minute summer 60 minute summer 60 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6 S10.0	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak Infiltration 1.008 4.000 Hydro-Brak 1.009 1.010 5.000	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.6 S14.6 S14.7 S14.8 S11.5 S11.4 e [®] S11.5 S11.4 S11.5 S11.6 S10.6 S10.1	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 10 15 142 2 -41 14	ow Vel 0.5 -0 2.0 -0 2.2 -0 3.6 1 3.6 1 3.7 2 6.9 0 2.1 3 3.9 0 2.1 3 2.0 -0 3.7 2 3.7 2 3.7 2 3.7 2 3.7 2 3.7 2 3.7 2 3.7 2 3.7 2 3.9 0 3.1 3 3.2 0 3.3 0	ocity Flow n/s)).015).473).402).613 1.004 1.257).936 1.830 2.258).738 3.574).710).693).389	w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729 0.250 3.356 -0.359 0.124 0.048	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017 1.3428 0.5354 2.1083 3.2794 0.9992	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 180 minute summer 180 minute summer 60 minute summer 7200 minute summer 60 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6 S10.0 S10.1	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak Infiltration 1.008 4.000 Hydro-Brak 1.009 1.010 5.000 5.001	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.5 S14.6 S14.7 s14.8 S11.5 S11.4 S11.5 S11.4 S11.5 S11.6 S10.6 S10.1 S10.2	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 10 15 142 2 -41 14 3 26	Well (n 0.5 -0 2.0 -0 2.1.6 0 2.2 -0 3.6 1 7.2 0 1.8 1 3.7 2 6.9 0 2.1 3 2.2 0 1.2 0 1.3 0 3.8 0 5.4 0	ocity Flow n/s)).015).473).402).613 1.004 1.257).936 1.830 2.258).738 3.574).710).693).389).749	w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729 0.250 3.356 -0.359 0.124 0.048 0.337	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017 1.3428 0.5354 2.1083 3.2794 0.9992 0.7163	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 180 minute summer 180 minute summer 15 minute summer 60 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6 S10.0 S10.1 S10.2	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak Infiltration 1.008 4.000 Hydro-Brak 1.009 1.010 5.000 5.001 5.002	DS Node S15.1 S15.2 S14.2 S14.2 S14.3 S14.5 S14.5 S14.5 S14.6 S14.7 e® S14.8 S11.5 S11.4 e® S11.5 S11.4 s11.5 S11.4 S11.5 S11.6 S10.6 S10.1 S10.2 S10.3	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 10 15 142 2 -41 14 3 26 31	W Vel 0.5 -0 2.0 -0 2.0 -0 2.0 -0 2.0 -0 3.6 1 7.2 0 3.6 1 7.2 0 3.7 2 6.9 0 2.1 3 2.0 -0 3.3 0 3.4 0 5.4 0 6.4 0	ocity Flow 0.015 0.173 0.473 0.402 0.402 0.613 1.004 1.257 0.936 1.830 2.258 0.738 3.574 0.710 0.693 0.389 0.749 0.453	 w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729 0.250 3.356 -0.359 0.124 0.048 0.337 0.407 	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017 1.3428 0.5354 2.1083 3.2794 0.9992 0.7163 1.2102	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 180 minute summer 180 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6 S10.0 S10.1 S10.2 S10.3	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak Infiltration 1.008 4.000 Hydro-Brak 1.009 1.010 5.000 5.001 5.002 5.003	DS Node S15.1 S15.2 S14.2 S14.2 S14.3 S14.5 S14.5 S14.5 S14.5 S14.6 S14.7 S14.6 S14.7 S14.8 S11.5 S11.4 e® S11.5 S11.6 S10.6 S10.1 S10.2 S10.3 S10.4	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 100 15 142 2 -41 14 3 26 31 -40	ow Vel 0.5 -0 2.0 -0 2.6 -0 2.6 -0 2.2 -0 3.6 1 7.2 0 1.8 1 7.2 0 1.8 1 3.7 2 1.0 -0 2.1 3 3.7 2 1.3 0 3.8 0 5.4 0 0.2 -0	ocity Flow n/s)).015).473).402).402).613 1.004 1.257).936 1.830 2.258).738 3.574).710).693).389).749).453).571	 w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729 0.250 3.356 -0.359 0.124 0.048 0.337 0.407 -0.514 	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017 1.3428 0.5354 2.1083 3.2794 0.9992 0.7163 1.2102 1.1680	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 180 minute summer 180 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6 S10.0 S10.1 S10.2 S10.3 S10.4	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak Infiltration 1.008 4.000 Hydro-Brak 1.009 1.010 5.000 5.001 5.002 5.003 5.004	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 S14.8 S11.5 S11.4 S11.5 S11.4 S11.5 S11.6 S10.6 S10.1 S10.2 S10.3 S10.4 S10.5	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 100 15 142 2 -41 14 3 26 31 -40 168	W Vel 0.5 -0 2.0 -0 2.0 -0 2.0 -0 2.0 -0 2.0 -0 3.0 -0 3.6 1 7.2 0 1.8 1 3.7 2 6.9 0 2.1 3 3.7 2 4.0 -0 2.1 3 5.9 0 3.8 0 5.4 0 5.4 0 0.2 -0 3.8 0 5.4 0 0.2 -0	ocity Flow n/s) 0.015 0.473 0.402 0.403 0.402 0.613 0.004 1.257 0.936 1.830 2.258 0.738 3.574 0.710 0.693 0.389 0.749 0.453 0.571 0.399 0.453	 w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729 0.250 3.356 -0.359 0.124 0.048 0.337 0.407 -0.514 2.157 	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017 1.3428 0.5354 2.1083 3.2794 0.9992 0.7163 1.2102 1.1680 2.4795	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 180 minute summer 180 minute summer 180 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6 S10.0 S10.1 S10.2 S10.3 S10.4 S10.5	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak 1.008 4.000 Hydro-Brak 1.009 1.010 5.000 5.001 5.002 5.003 5.004 Hydro-Brak	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 S14.8 S11.5 S11.4 e* S11.5 S11.6 S10.6 S10.1 S10.2 S10.3 S10.4 S10.5 S10.6	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 10 15 142 2 -41 14 3 26 31 -40 168	W Vel 0.5 -0 2.0 -0 2.0 -0 2.0 -0 2.0 -0 3.6 1 7.2 0 1.8 1 3.7 2 1.8 1 3.7 2 1.3 0 2.1 3 2.0 -0 2.1 3 3.8 0 5.9 0 3.8 0 5.4 0 5.4 0 3.8 0 5.4 0 3.9 2	ocity Flow n/s) 0.015 0.473 0.402 0.403 0.402 0.613 0.004 1.257 0.936 1.830 2.258 0.738 3.574 0.710 0.693 0.389 0.749 0.7453 0.571 2.399 0.453	 w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729 0.250 3.356 -0.359 0.124 0.048 0.337 0.407 -0.514 2.157 	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017 1.3428 0.5354 2.1083 3.2794 0.9992 0.7163 1.2102 1.1680 2.4795	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 180 minute summer 180 minute summer 180 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6 S10.0 S10.1 S10.2 S10.3 S10.4 S10.5 S10.5	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak Infiltration 1.008 4.000 Hydro-Brak 1.009 1.010 5.001 5.001 5.002 5.003 5.004 Hydro-Brak Infiltration	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 S14.8 S11.5 S11.4 S11.5 S11.4 S11.5 S11.6 S10.1 S10.2 S10.3 S10.4 S10.5 S10.6	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 10 15 142 2 -41 14 3 26 31 -40 168 1	Weil (n 0.5 -0 2.0 -0 1.6 0 2.2 -0 3.6 1 7.2 0 1.8 1 3.7 2 6.9 0 2.1 3 3.7 2 1.3 0 2.1 3 2.0 -0 2.12 0 3.8 0 5.4 0 3.8 0 5.4 0 3.9 2 3.6 2	ocity Flow 0.6ity Flow 0.015 0.473 0.402 0.613 0.004 0.257 0.936 0.830 0.738 3.574 0.710 0.693 0.389 0.749 0.453 0.571 2.399 0.453	 w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729 0.250 3.356 -0.359 0.124 0.048 0.337 0.407 -0.514 2.157 	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017 1.3428 0.5354 2.1083 3.2794 0.9992 0.7163 1.2102 1.1680 2.4795	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 180 minute summer 180 minute summer 15 minute summer 60 minute summer 15 minute summer 960 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.5 S11.6 S10.0 S10.1 S10.2 S10.3 S10.4 S10.5 S10.5 S10.5 S10.5 S10.6	Link 1.000 Hydro-Brak 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brak Infiltration 1.008 4.000 Hydro-Brak 1.009 1.010 5.001 5.001 5.002 5.003 5.004 Hydro-Brak Infiltration 1.011	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 S14.6 S14.7 S14.8 S11.5 S11.4 S11.5 S11.4 S11.5 S11.4 S11.5 S11.6 S10.6 S10.1 S10.2 S10.3 S10.4 S10.5 S10.6 S10.7	Outflo (I/s) -0 2 -21 -22 -43 110 138 37 201 198 4 10 15 142 2 -41 14 3 26 31 -40 168 1 3	Weil (n 0.5 -0 2.0 -0 2.0 -0 2.0 -0 2.0 -0 3.6 1 7.2 0 3.6 1 7.2 0 3.7 2 4.0 -0 2.1 3 2.0 -0 2.1 3 2.0 -0 3.8 0 5.4 0 5.4 0 3.9 2 3.6 1 3.8 0 5.4 0 5.4 0 3.5 -0	ocity Flow 0.6ity Flow 0.473 0.402 0.402 0.613 1.004 1.257 0.936 1.830 1.830 2.258 0.738 3.574 0.710 0.693 0.389 0.749 0.453 0.571 2.399 0.744	 w/Cap -0.016 -0.276 -0.237 -0.549 0.963 1.206 0.879 1.756 1.729 0.250 3.356 -0.359 0.124 0.048 0.337 0.407 -0.514 2.157 	Link /ol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0017 1.3428 0.5354 2.1083 3.2794 0.9992 0.7163 1.2102 1.1680 2.4795	Discharge Vol (m ³)

		Barr	ett Mahon	iy Cons	ulting	File: SW Network B1.pfd				Page 12		
	ENGINEERS	Engi	neers Ltd.			Network	: Catcl	hment B	1	20.170		
	UCTURAL	52-5	4 Lower S	andwit	h Street	Dirk Kotz	ze			Dunc	drum Cer	ntral
		Dub	in, D02 W	R26		15/03/2	022			Deve	lopment	
	<u>Results fo</u>	or 100	year +20%	<u>% CC Cr</u>	ritical Storn	n Duratio	n. Lov	vest mas	s balanc	e: 99.8	<u>5%</u>	
Node E	vent		US	Peak	Level	Depth	Inflo	w No	de	Flood	Sta	atus
		1	Node	(mins)) (m)	(m)	(I/s)	Vol	(m³)	(m³)		
60 minute s	ummer	S10	.7	40	43.703	1.384	66.	6 3.	, 5380 (0.0000	FLOOD) RISK
60 minute s	ummer	S6.4	ŀ	43	3 42.324	0.124	40.	2 23.	4837 (0.0000	ОК	
60 minute s	ummer	S10	.8	40	43.689	1.674	32.	4 2.	9580 (0.0000	SURCH	IARGED
15 minute s	ummer	OUT	FB1	1	41.972	0.000	14.	0 0.	0000 (0.0000	ОК	
15 minute s	ummer	S8.C)	10) 42.895	0.095	20.	1 0.	1874 (0.0000	ОК	
15 minute s	ummer	S23	.0	10) 42.923	0.123	31.	1 0.	1995 (0.0000	ОК	
15 minute s	ummer	S8.1		10) 42.848	0.248	103.	6 0.	5924 (0.0000	ОК	
15 minute s	ummer	S7.0)	10) 42.707	0.107	20.	1 0.	1516 (0.0000	ОК	
2160 minute	e summer	S7.1		1500) 42.591	0.591	10.	2 238.	8462 (0.0000	SURCH	IARGED
15 minute s	ummer	OUT	4	1	41.980	0.000	0.	5 0.	0000 (0.0000	OK	
15 minute s	ummer	sar	h	10) 11 305	0 305	122	1 2	0086 (<u>מחחח ר</u>	OK	
15 minute s	ummer	10 0	,)∩∩∙5∩%	10) 44 260	0.303	194	1 0	0000 (OK	
2880 minute	e summer	59.0	00.5070	2160) 44 205	0.925	13	6 383	6065 (SURCH	
2880 minute	e summer	59.2		2160) 44 205	1 080	3	8 1	2219 (00000	SURCE	
15 minute s	ummer	011	5	1	43 013	0.000	1	8 0		0000	OK	NINGED
15 minute 5	unner	001		-	43.013	0.000	1.				ÖK	
Link Event	t	US	Link		DS	Outflo	w \	/elocity	Flow/O	Сар	Link	Discharge
(Upstream De	epth) N	lode			Node	(I/s))	(m/s)		١	/ol (m³)	Vol (m³)
60 minute sumr	mer S	10.7	1.012		S10.8	32	2.4	0.682	0.1	L74	7.8049	
60 minute sumr	mer S	6.4	Hydro-Bra	ake®	S10.8	2	L.3					
60 minute sumr	mer S	6.4	Infiltratio	n		11	l.1					
60 minute sumr	mer S	10.8	Hydro-Bra	ake®	OUTB1	14	1.0					153.9
15 minute sumr	mer S	8.0	7.000		S8.1	20).1	0.496	0.2	221	1.2095	
15 minute sum	mer S	23.0	8.000		S8.1	32	L.O	1.236	0.2	279	0.1533	
15 minute sumr	mer S	8.1	7.001		S7.1	102	2.6	1.734	0.9	923	1.9021	
15 minute sum	mer S	7.0	9.000		S7.1	20).1	1.153	0.3	387	0.1322	
2160 minute su	mmer S	7.1	Hydro-Bra	ake®	OUT4	-	2.0					167.9

15 minute summer	S9.0	10.000	10.000:50%	133.0	1.339	0.665	0.6791	
15 minute summer	S9.0	10.000	S9.1	194.1	2.000	0.970	0.6617	
2880 minute summer	S9.1	10.001	S9.2	3.8	0.160	0.026	2.4940	
2880 minute summer	S9.2	Hydro-Brake®	OUT5	2.0				268.8

	RETT MAHONY Sulting Engineers & STRUCTURAL	Bar Eng 52-	rett Ma gineers L 54 Lowe	hony Co Ltd. er Sandv	nsulting vith Stre	F N et D	ile: SW Network Dirk Kot:	Network : Catchm ze	B2.pfd ent B2	P 2 C	Page 1 20.170 Dundrum Central Development			
		Dub	olin, DO	2 WR26		Design Sottings								
					De	<u>sign Se</u>	<u>ttings</u>							
Ra	infall Methodo	ogy	FSR			Max	imum T	ime of Co	oncentrati	on (min	s) 30.0	0		
Re	turn Period (ye	ars)	5					Maximu	m Rainfal	l (mm/h	ir) 50.0			
ļ	Additional Flow (%) 0							Minii	mum Velo	city (m/	's) 1.00			
	FSR Region Scotland and Ireland						N 43		Connec	tion lyp	be Leve	el Somts		
	M5-60 (mm) 18.000						IVII	Droform	ackarop F	ieight (r	n) 0.20 m) 1.20	0		
	капо-к 0.277 СV 1.000						1	nclude In	tormodiat	eptil (i	n) 1.20 nd ./	0		
т	CV 1.000 Time of Entry (mins) 4.00						Enfor	re hest n	ractice de	sign rul				
	inte of Entry (in	11137	4.00				LINO	ce best p		Signitur				
						<u>Node</u>	<u>s</u>							
	Nan	ne /	Area	T of E	Cover	Dian	neter	Easting	Northin	ng De	pth			
			(ha)	(mins)	Level	(m	ım)	(m)	(m)	(n	n)			
					(m)									
	S4.0	C	0.030	4.00	41.530		1200	183.503	49.54	10 0.7	780			
	S4.1	C	0.016	4.00	41.280		1200	193.179	58.13	31 0.6	516			
	54.2	(J.013	4.00	41.210		1200	199.740	55.84	10 0.5	592 707			
	S4.3	C C	J.000	4.00	41.270		1200	206.427	114.98	58 U.	/8/			
	54.4		J.U04	4.00	41.210		1200	193.970	114.20	DO 1.0	JUZ			
	JZZ. Tank	· K C	J. 142 1 333	4.00	41.040		1200	168 678	141.50	22 19	250			
	S4 5	K C	0.000 0.100	4.00	41.450		1350	182 687	149.89	30 2.°	159			
	S4.6	C	0.059	4.00	41.450		1350	195.970	154.08	37 2.2	268			
	OUT	B2			40.150		1350	238.487	164.51	L9 1.4	106			
	S4.7				40.740		1350	219.945	160.67	73 1.8	307			
						<u>Links</u>	<u>i</u>							
Name	US [DS	Length	ks (m	m) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain		
	Node No	ode	(m)	n	Ì	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)		
8	S4.0 S4.	1	12.971	. 0	.600 4	0.750	40.66	4 0.086	150.0	225	4.20	50.0		
7	S4.1 S4.	2	6.949	0	.600 4	0.664	40.61	8 0.046	150.0	225	4.31	50.0		
6	S4.2 S4.	3	20.282	0	.600 4	0.618	40.48	3 0.135	150.0	225	4.63	50.0		
5	S4.3 S4.	4	41.206	0	.600 4	0.483	40.20	8 0.275	150.0	225	5.27	50.0		
4	S4 4 S4	5	37.358	. 0	.600 4	0.208	39.83	4 0.374	100.0	225	5 75	50.0		

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
8	S4.0	S4.1	12.971	0.600	40.750	40.664	0.086	150.0	225	4.20	50.0
7	S4.1	S4.2	6.949	0.600	40.664	40.618	0.046	150.0	225	4.31	50.0
6	S4.2	S4.3	20.282	0.600	40.618	40.483	0.135	150.0	225	4.63	50.0
5	S4.3	S4.4	41.206	0.600	40.483	40.208	0.275	150.0	225	5.27	50.0
4	S4.4	S4.5	37.358	0.600	40.208	39.834	0.374	100.0	225	5.75	50.0
9	S22.0	S4.5	28.114	0.600	40.000	39.719	0.281	100.0	225	4.36	50.0
10	Tank_K	S4.5	30.549	0.600	39.600	39.396	0.204	150.0	150	4.62	50.0
3	S4.5	S4.6	13.935	0.600	39.321	39.182	0.139	100.0	375	5.88	50.0
2	S4.6	S4.7	24.863	0.600	39.182	38.933	0.249	100.0	375	6.11	50.0
1.007	S4.7	OUTB2	18.937	0.600	38.933	38.744	0.189	100.0	225	6.35	50.0

Name	Vel (m/s)	Cap (L/s)	US Denth	DS Depth	Σ Area (ba)	Σ Add
	(11/3)	(1/3)	(m)	(m)	(iia)	(I/s)
8	1.065	42.3	0.555	0.391	0.030	0.0
7	1.065	42.3	0.391	0.367	0.046	0.0
6	1.065	42.3	0.367	0.562	0.059	0.0
5	1.065	42.3	0.562	0.777	0.059	0.0
4	1.307	52.0	0.777	1.421	0.123	0.0
9	1.307	52.0	1.615	1.536	0.142	0.0
10	0.818	14.5	1.700	1.934	0.333	0.0
3	1.812	200.1	1.784	1.893	0.698	0.0
2	1.812	200.1	1.893	1.432	0.757	0.0
1.007	1.307	52.0	1.582	1.181	0.757	0.0

	Barrett Mahony Co	onsulting	File: SW Netw	ork B2.pfd	Page 2			
	Engineers Ltd.		Network: Cato	chment B2	20.170			
	52-54 Lower Sand	with Street	Dirk Kotze		Dundrum Central			
	Dublin, D02 WR26		15/03/2022		Development			
		<u>Simulatio</u>	n Settings					
Rainfall	Methodology FSR			Skip Steady Stat	e x			
	FSR Region Scot	land and Irela	nd Drair	n Down Time (min	s) 240			
	M5-60 (mm) 18.0	000	Additic	onal Storage (m³/ha	a) 20.0			
	Ratio-R 0.27	7	Cheo	ck Discharge Rate(s) x			
	Summer CV 1.00	00	Chec	k Discharge Volum	e x			
А	nalysis Speed Nor	mal						
		Storm D	urations					
15 60	180 360	600 9	60 2160	4320 720	0 10080			
30 120	240 480	720 14	140 2880	5760 864	0			
50 120	240 400	720 1	2000	5700 004				
R	eturn Period Clim	ate Change	Additional Are	a Additional Flo	14/			
	(vears)		(A %)					
	(years) 5	20	(~ 70)	0	0			
	30	20		0	0			
	100	20		0	0			
	100	20		0	0			
	Nodo Ta	nk K Online I	Judro Brako® (ontrol				
	Noue la			.011(10)				
E			Objectiv	o (HE) Minimico	unstroam storago			
Poplaces Downstr	ap valve x		Sump Availabl		upstream storage			
Replaces Dowlist					0042-1000-1600-1000			
IIIvert Design C	Level (III) 59.000	Min Out	et Diamatar (m	-1000-1800-1000				
Design	$F_{1} = \frac{1}{2} \left(\frac{1}{2} \right)^{2} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} = \frac{1}{2} \left$	Nin Out	Diameter (m					
Design	FIOW (I/S) 1.0		e Diameter (mm					
	Nodo		udua Buaka® Ca	untural.				
	<u>Node s</u>	54.7 Unline H	uro-brake [®] Co	ntroi				
F	lan Valve v		Objectiv	o (HE) Minimiso	unstream storage			
Poplaces Downstr	apvalve x		Sump Availabl		upstream storage			
Replaces Dowlist	$\frac{\text{Control}(m)}{28.022}$		Sump Available		4000 1600 4000			
nivert Desize D	Level (III) 56.955	Min Out			-4000-1800-4000			
Design	$F_{1} = \frac{1}{2} \left(\frac{1}{2} \right)^{2} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{2} = \frac{1}{2} \left$	Nin Out	Diameter (m	1) 0.100				
Design	FIOW (I/S) 4.0	IVIIN NOde	e Diameter (mm	1) 1200				
	Nodo To	ale K Dawth /A	waa Chawaaa Ch					
	Node la	nk_k Deptn/A	irea storage str	ructure				
Rasa Inf Cooffician	+(m/br) = 0.00000	Safaty Fa	stor 20	Invort	$ a_{1}a_{2} $ (m) 20,600			
Side Inf Coefficien	t(m/hr) = 0.00000	Salety Fa	city 1.00	Time to half omn	ty (minc)			
Side III Coefficien		PUIC	Sity 1.00	nine to nan emp	ty (mins)			
Donth	Area Inf Area	Donth Ar	a Inf Araa	Donth Aroa	Inf Area			
(m)	Area III Area	Jeptin Are	$\frac{2}{2}$ $\frac{111}{2}$	Jeptin Area				
(m)	(m ⁻) (m ⁻)	(m) (m	-) (m-)	(m) (m ⁻)	(m ⁻)			
0.000	03.8 0.0	1.200 303	0.8 0.0	1.201 0.0	0.0			
	Node S	47 Donth /Ar	aa Storago Stru	icture				
	Noue 5	4.7 Deptil/Al	ea Storage Stru					
Rase Inf Coefficien	t (m/hr) 0 26400	Safety Fa	ctor 50	Invert	evel (m) 38 933			
Side Inf Coefficien	t (m/hr) = 0.20400	Doro		Time to half emp	$t_v(mins) = 320$			
Side in Coencien	0.20400	FUIC	511y 0.55	inne to nan emp	cy (111113) 320			
Denth	Area Inf Area	Depth Are	a Inf∆rea	Depth Area	Inf Area			
(m)	(m^2) (m^2)	(m) (m	(m^2)	(m) (m ²)	(m ²)			
0.000		1 600 1 60	<i>יייי)</i> סראר דו		267.0			
0.000	105.7 105.7	1.000 105	207.0	1.001 0.0	207.0			

Flow+ v10.3 Copyright © 1988-2022 Causeway Technologies Ltd

		Ba	rrett Ma	hony Con	sulting	File: S	W Net	twork B2.	pfd	Pa	age 3	
		En	gineers l	_td.		Netw	ork: Ca	atchment	B2	20	0.170	
D I	V CIVIL & STRUCTURAL	52	-54 Lowe	er Sandwi	th Street	Dirk K	otze			D	undrum C	Central
		Du	blin, D02	2 WR26		15/03	/2022			D	evelopme	nt
		-				-	-				•	
	Results	for 5	5 year +2	0% CC Cri	itical Storr	n Durati	on. Lo	west ma	ss balan	ce: 99	.86%	
	Node Event		US	Peak	Level	Depth	Inflo	w No	de	Flood	Sta	atus
			Node	(mins)	(m)	(m)	(I/s) Vol	(m³)	(m³)		
	15 minute summer		S4.0	10	40.824	0.074	9	.6 0.1	1405 (0.0000) OK	
	15 minute summer	•	S4.1	10	40.769	0.105	14	.7 0.	1737 (0.0000) OK	
	15 minute summer	•	S4.2	10	40.728	0.110	18	.9 0.	1730 (0.0000) OK	
	15 minute summer	•	S4.3	11	40.585	0.102	18	.9 0.	1155 (0.0000) OK	
	15 minute summer	•	S4.4	11	40.353	0.145	38	.6 0.	3493 (0.0000) OK	
	15 minute summer	-	S22.0	10	40.174	0.174	45	.4 0.4	4640 (0.0000) OK	
	5760 minute sumn	ner	Tank_K	4080	40.240	0.640	4	.0 197.4	4906 (0.0000	SURCH	IARGED
	15 minute summer	-	S4.5	10	39.563	0.242	113	.4 0.	5696 (0.0000) OK	
	360 minute summe	er	S4.6	256	39.492	0.310	31	.9 0.	5050 (0.0000	OK	
	15 minute summer	-	OUTB2	1	38.744	0.000	3	.5 0.0	0000 0	0.0000) OK	
	360 minute summe	er	S4.7	256	39.492	0.559	31	.8 90.9	9036 (0.0000	SURCH	IARGED
	Link Event	U	S	Link	DS	Outf	low	Velocity	Flow/	Сар	Link	Discharge
	(Upstream Depth)	No	de		Node	e (I/	s)	(m/s)			Vol (m³)	Vol (m³)
	15 minute summer	S4.0	8		S4.1		9.6	0.653	0.	227	0.1917	
	15 minute summer	S4.1	. 7		S4.2	1	14.7	0.784	0.	347	0.1304	
	15 minute summer	S4.2	6		S4.3	-	18.9	1.025	0.	445	0.3730	

S4.4

S4.5

S4.5

S4.5

S4.6

S4.7

OUTB2

18.3

37.0

45.3

0.7

113.0

31.8

3.6

3.0

0.818

1.402

1.433

1.514

1.059

0.431

0.711

0.872

0.565

0.159

0.9181

0.9851

0.8881

1.0589

2.5823

96.2

15 minute summer

15 minute summer

15 minute summer

15 minute summer

360 minute summer

360 minute summer

360 minute summer

5760 minute summer

S4.3

S4.4

S4.5

S4.6

S4.7

S4.7

S22.0

5

4

9

3

2

Hydro-Brake[®]

Infiltration

Tank_K Hydro-Brake®

	Barrett Mai	File: SW Network B2.pfd				Page 4				
	Engineers L	td.		Netwo	ork: Catcl	nment B2	20	20.170 Dundrum Central		
CIVIL & STRUCTURAL	52-54 Lowe	er Sandwi	th Street	Dirk K	otze		Du			
	Dublin, D02	2 WR26		15/03	/2022		De	evelopment		
<u>Results i</u>	<u>ior 30 year +2</u>	20% CC Cı	itical Stor	m Durati	ion. Low	est mass ba	ance: 99	<u>.86%</u>		
Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status		
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)			
15 minute summer	S4.0	10	40.843	0.093	14.1	0.1776	0.0000	ОК		
15 minute summer	S4.1	10	40.800	0.136	21.6	0.2242	0.0000	ОК		
15 minute summer	S4.2	10	40.758	0.140	27.7	0.2198	0.0000	ОК		
15 minute summer	S4.3	10	40.611	0.128	27.6	0.1453	0.0000	ОК		
15 minute summer	S4.4	11	40.416	0.208	56.8	0.5018	0.0000	ОК		
15 minute summer	S22.0	10	40.403	0.403	66.7	1.0788	0.0000	SURCHARGED		
5760 minute summ	er Tank_K	4200	40.487	0.887	5.2	273.5883	0.0000	SURCHARGED		
360 minute summe	r S4.5	280	39.839	0.518	38.8	1.2204	0.0000	SURCHARGED		
360 minute summe	r S4.6	280	39.838	0.656	44.8	1.2813	0.0000	SURCHARGED		
15 minute summer	OUTB2	1	38.744	0.000	3.6	0.0000	0.0000	ОК		
	× C 4 7	200	30 838	0 905	12 Q	1/7 2025	0 0000	SUDCHADGED		

(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	S4.0	8	S4.1	14.1	0.697	0.333	0.2635	
15 minute summer	S4.1	7	S4.2	21.6	0.846	0.509	0.1773	
15 minute summer	S4.2	6	S4.3	27.6	1.117	0.651	0.5007	
15 minute summer	S4.3	5	S4.4	26.7	0.863	0.631	1.2714	
15 minute summer	S4.4	4	S4.5	53.3	1.479	1.025	1.3893	
15 minute summer	S22.0	9	S4.5	63.8	1.605	1.227	1.0910	
5760 minute summer	Tank_K	Hydro-Brake [®]	S4.5	0.8				
360 minute summer	S4.5	3	S4.6	38.6	1.172	0.193	1.5370	
360 minute summer	S4.6	2	S4.7	42.9	1.172	0.214	2.7423	
360 minute summer	S4.7	Hydro-Brake [®]	OUTB2	3.6				98.9
360 minute summer	S4.7	Infiltration		3.3				

	Barrett Mai	File: SW Network B2.pfd				Page 5						
	Engineers L	td.		Netwo	ork: Catcł	nment B2	20	20.170 Dundrum Central				
V CIVIL & STRUCTURAL	52-54 Lowe	er Sandwi	th Street	Dirk K	otze		Du					
	Dublin, D02	2 WR26		15/03	/2022		De	Development				
Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.86%												
Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status				
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)					
15 minute summer	S4.0	10	40.863	0.113	18.3	0.2144	0.0000	OK				
15 minute summer	S4.1	10	40.830	0.166	28.0	0.2739	0.0000	ОК				
15 minute summer	S4.2	11	40.813	0.195	35.7	0.3054	0.0000	ОК				
15 minute summer	S4.3	11	40.742	0.259	35.3	0.2933	0.0000	SURCHARGED				
15 minute summer	S4.4	11	40.600	0.392	68.1	0.9450	0.0000	SURCHARGED				
15 minute summer	S22.0	10	40.761	0.761	86.7	2.0349	0.0000	SURCHARGED				
4320 minute summ	er Tank_K	3540	40.711	1.111	7.5	342.6375	0.0000	SURCHARGED				
480 minute summe	r S4.5	360	40.142	0.821	39.3	1.9352	0.0000	SURCHARGED				
480 minute summe	r S4.6	360	40.141	0.959	44.9	1.8729	0.0000	SURCHARGED				
15 minute summer	OUTB2	1	38.744	0.000	3.6	0.0000	0.0000	ОК				
		200	10 1 11	1 200	11 1	106 1071	0 0000					

(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	S4.0	8	S4.1	18.3	0.718	0.431	0.3328	
15 minute summer	S4.1	7	S4.2	27.9	0.877	0.658	0.2317	
15 minute summer	S4.2	6	S4.3	35.3	1.176	0.833	0.7734	
15 minute summer	S4.3	5	S4.4	32.8	0.868	0.774	1.6388	
15 minute summer	S4.4	4	S4.5	61.9	1.558	1.191	1.4449	
15 minute summer	S22.0	9	S4.5	82.8	2.082	1.593	1.1068	
4320 minute summer	Tank_K	Hydro-Brake [®]	S4.5	0.9				
480 minute summer	S4.5	3	S4.6	38.6	1.130	0.193	1.5370	
480 minute summer	S4.6	2	S4.7	44.4	1.172	0.222	2.7423	
480 minute summer	S4.7	Hydro-Brake [®]	OUTB2	3.6				123.1
480 minute summer	S4.7	Infiltration		3.6				

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL Rainfall Methodolo Return Period (yea Additional Flow (FSR Regi M5-60 (m	Barrett Mahony Cor Engineers Ltd. 52-54 Lower Sandw Dublin, D02 WR26 ogy FSR rs) 5 %) 0 on Scotland and Ire m) 18.000	nsulting F Nith Street D 1 Design Set Maxi	ile: SW Network letwork: Catchm birk Kotze 5/03/2022 ttings mum Time of Cc Maximu Minir Minimum Ba	A-50%.ptd Page 1 20.170 Dundrum Central Development 50% Blockage oncentration (mins) 30.00 Jum Rainfall (mm/hr) 50.0 mum Velocity (m/s) 1.00 Connection Type Level Soffits Backdrop Height (m) 0.200 red Cover Depth (m) 1.200					
Time of Entry (mi	CV 1.000 Time of Entry (mins) 4.00			Include Intermediate Ground \checkmark Enforce best practice design rules x					
Simulation Settings									
Rainfall MethodologyFSRSkip Steady StatexFSR RegionScotland and IrelandDrain Down Time (mins)240M5-60 (mm)18.000Additional Storage (m³/ha)20.0Ratio-R0.277Check Discharge Rate(s)xSummer CV1.000Check Discharge VolumexAnalysis SpeedNormalX									
Storm Durations									
15 60 30 120	180360240480	600 960 720 1440	2160 2880	4320 720 5760 864	0 10080 0				
R	Additional Flo (Q %)	w							
	<u>Node S1</u>	.13 Online Hyd	ro-Brake [®] Contr	<u>ol</u>	0				
F Replaces Downstr Invert Design D Design	Si Pro Min Outlet Min Node D	Objective (HE) Minimise upstream storage Sump Available √ Product Number CTL-SHE-0074-4000-3000-4000 Iin Outlet Diameter (m) 0.100 in Node Diameter (mm) 1200							
	<u>Node S1</u>	2.3 Online Hyd	ro-Brake [®] Contr	<u>ol</u>					
F Replaces Downstr Invert Design D Design	Flap Valve x Replaces Downstream Link √ Invert Level (m) 40.800 Design Depth (m) 2.000 Mir Design Flow (I/s) 2.0 Min			(HE) Minimise upstream storage ✓ CTL-SHE-0057-2000-2000-2000 0.075 1200					
	<u>Node S</u>	3.7 Online Hydi	ro-Brake [®] Contro	<u>ol</u>					
F Replaces Downstr Invert Design D Design	lap Valve x ream Link √ Level (m) 38.075 Depth (m) 2.000 Flow (l/s) 2.0	Si Pro Min Outlet Min Node D	Objective ump Available oduct Number Diameter (m) iameter (mm)	(HE) Minimise ✓ CTL-SHE-0057- 0.075 1200	upstream storage -2000-2000-2000				

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL	Barrett Mahony Consulting Engineers Ltd. 52-54 Lower Sandwith Stre Dublin, D02 WR26	g File: SW Network A-50%.pfd Network: Catchment A eet Dirk Kotze 15/03/2022	Page 2 20.170 Dundrum Central Development							
Node S1.19 Online Hydro-Brake [®] Control										
Flap ValvexObjective(HE) Minimise upstream storageReplaces Downstream Link✓Sump Available✓Invert Level (m)37.000Product NumberCTL-SHE-0082-3500-1500-3500Design Depth (m)1.500Min Outlet Diameter (m)0.100Design Flow (I/s)3.5Min Node Diameter (mm)1200										
	<u>Node S1.13 De</u>	oth/Area Storage Structure								
Base Inf Coefficien Side Inf Coefficien	t (m/hr) 0.26400 Saf t (m/hr) 0.26400	ety Factor 5.0 Inver Porosity 0.95 Time to half em	t Level (m) 38.850 pty (mins) 0							
Depth (m) 0.000 2	Area Inf Area Depth (m²) (m²) (m) 226.0 226.0 3.000	Area Inf Area Depth Area (m²) (m²) (m) (m²) 226.0 422.8 3.010 0.0	a Inf Area (m²)) 422.8							
	Node S12.3 Depth/Area Storage Structure									
Base Inf Coefficien Side Inf Coefficien	t (m/hr) 0.00000 Saf t (m/hr) 0.00000	ety Factor 2.0 Inver Porosity 1.00 Time to half em	t Level (m) 40.800 apty (mins)							
Depth (m) 0.000 1	Area Inf Area Depth (m²) (m²) (m) 182.2 0.0 2.000	Area Inf Area Depth Area (m²) (m²) (m) (m²) 182.2 0.0 2.010 0.0	inf Area (m ²) 0.0							
	Node S3.7 Dep	th/Area Storage Structure								
Base Inf Coefficien Side Inf Coefficien	t (m/hr) 0.26400 Saf t (m/hr) 0.26400	ety Factor 2.0 Inver Porosity 1.00 Time to half em	t Level (m) 38.075 pty (mins) 0							
Depth (m) 0.000	Area Inf Area Depth (m²) (m²) (m) 77.0 77.0 2.000	Area Inf Area Depth Area (m²) (m²) (m) (m²) 77.0 156.4 2.010 0.0	Inf Area (m²) 156.4							

	Barrett Mahony Consulting	File: SW Network A-50%.pfd	Page 3						
BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL	Engineers Ltd.	Network: Catchment A	20.170						
	52-54 Lower Sandwith Street	Dirk Kotze	Dundrum Central						
	Dublin, D02 WR26	15/03/2022	Development						
Results for 100 year +20% CC Critical Storm Duration Lowest mass balance: 98 66%									

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	S2.0	10	43.973	0.523	47.6	1.0987	0.0000	SURCHARGED
15 minute summer	S2.1	11	43.696	0.474	66.2	0.7454	0.0000	SURCHARGED
15 minute summer	S1.7	11	43.246	0.046	1.8	0.0523	0.0000	ОК
15 minute summer	S1.8	11	43.246	0.265	82.4	0.4065	0.0000	ОК
15 minute summer	S1.8A	11	42.234	1.112	185.0	1.9404	0.0000	SURCHARGED
15 minute summer	S1.9	11	41.907	0.965	207.1	1.7195	0.0000	SURCHARGED
15 minute summer	S1.10	11	41.470	0.742	217.8	1.1844	0.0000	SURCHARGED
2160 minute summer	· S12.3	1680	42.593	1.793	14.3	334.4710	0.0000	SURCHARGED
15 minute summer	S12.4	11	41.238	0.502	7.8	0.5673	0.0000	SURCHARGED
15 minute summer	S1.11	11	41.237	0.675	224.5	1.0331	0.0000	SURCHARGED
15 minute summer	S1.12	11	40.870	0.516	229.5	0.7895	0.0000	SURCHARGED
600 minute summer	S1.13	495	40.182	1.331	46.5	287.9774	0.0000	SURCHARGED
240 minute summer	S1.14	164	38.773	0.081	2.7	0.1162	0.0000	ОК
240 minute summer	S1.15	160	38.772	0.311	4.8	0.4456	0.0000	ОК
240 minute summer	S1.16	160	38.772	0.441	5.1	0.6485	0.0000	ОК
240 minute summer	S1.17	160	38.772	0.591	6.9	0.8857	0.0000	SURCHARGED
240 minute summer	S1.18	160	38.771	0.790	9.9	1.2624	0.0000	SURCHARGED
15 minute summer	S3.0	10	42.230	0.130	38.5	0.2610	0.0000	ОК
15 minute summer	S3.1	11	41.839	0.503	70.8	0.9570	0.0000	SURCHARGED
15 minute summer	S3.2	11	41.691	0.484	63.6	0.5783	0.0000	SURCHARGED
15 minute summer	S3.3	11	41.422	0.393	62.9	0.4444	0.0000	SURCHARGED
15 minute summer	S3.4	12	40.947	0.233	62.5	0.2637	0.0000	FLOOD RISK
15 minute summer	S3.5	11	40.370	0.356	61.7	0.4026	0.0000	FLOOD RISK
15 minute summer	S3.6	11	40.257	0.323	71.8	0.6485	0.0000	SURCHARGED
Link Event	US	Link	DS	Outfl	ow Vel	ocity Flow	/Cap	Link Discharge

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	S2.0	2.000	S2.1	43.1	1.085	1.019	1.3605	
15 minute summer	S2.1	2.001	S1.8	64.3	1.618	1.519	0.9681	
15 minute summer	S1.7	3.000	S1.8	-1.8	0.252	-0.042	0.1978	
15 minute summer	S1.8	2.002	S1.8A	81.8	1.331	0.961	0.8079	
15 minute summer	S1.8A	1.003	S1.9	181.3	1.644	1.181	3.3609	
15 minute summer	S1.9	1.004	S1.10	205.2	1.861	1.258	3.5467	
15 minute summer	S1.10	1.005	S1.11	216.9	1.967	1.330	1.2262	
2160 minute summer	S12.3	Hydro-Brake®	S12.4	1.9				
15 minute summer	S12.4	4.001	S1.11	-7.8	0.454	-0.086	1.0484	
15 minute summer	S1.11	1.006	S1.12	221.9	2.012	1.109	2.2975	
15 minute summer	S1.12	1.007	S1.13	229.2	2.080	1.146	2.1556	
600 minute summer	S1.13	Hydro-Brake [®]	S1.14	2.7				
600 minute summer	S1.13	Infiltration		4.6				
240 minute summer	S1.14	1.009	S1.15	3.6	0.532	0.014	2.3564	
240 minute summer	S1.15	1.010	S1.16	3.9	0.517	0.015	2.6762	
240 minute summer	S1.16	1.011	S1.17	4.3	0.515	0.017	3.9019	
240 minute summer	S1.17	1.012	S1.18	5.3	0.679	0.020	5.0030	
240 minute summer	S1.18	1.013	S1.19	5.7	0.171	0.011	6.5081	
15 minute summer	S3.0	5.000	S3.1	38.5	1.120	0.640	1.8184	
15 minute summer	S3.1	5.001	S3.2	60.2	1.513	0.816	0.2574	
15 minute summer	S3.2	5.002	S3.3	62.9	1.582	1.047	0.5305	
15 minute summer	S3.3	5.003	S3.4	62.5	1.602	1.202	1.2542	
15 minute summer	S3.4	5.004	S3.5	61.7	1.597	0.917	1.6701	
15 minute summer	S3.5	5.005	S3.6	61.2	1.538	0.910	0.1899	
15 minute summer	S3.6	5.006	S3.7	70.3	1.771	1.046	0.6299	

BARRETT MAHO CONSULTING ENGINE CIVIL & STRUCTUP

arrett Manony Consulting	File: SW NetWork A-50%			
ngineers Ltd.	Network: Catchment A			
2-54 Lower Sandwith Street	Dirk Kotze			
ublin, D02 WR26	15/03/2022			
	ngineers Ltd. 2-54 Lower Sandwith Street ublin, D02 WR26			

Results for 100	year +20% CC	Critical Storm	Duration.	Lowest mass	balance:	98.66%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
240 minute summer	\$3.7	180	38.796	0.721	26.3	56.3025	0.0000	SURCHARGED
240 minute summer	S3.8	164	38.770	0.797	3.4	0.9018	0.0000	SURCHARGED
360 minute summer	S1.19	224	38.770	1.770	6.8	3.1736	3.4367	FLOOD
15 minute summer	S1.20	1	36.822	0.000	3.3	0.0000	0.0000	ОК
15 minute summer	S12.2	11	42.289	1.050	89.0	1.7954	0.0000	SURCHARGED
15 minute summer	S12.0	11	42.691	0.491	30.5	0.9064	0.0000	SURCHARGED
15 minute summer	S12.1	11	42.629	0.843	59.6	1.3697	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
240 minute summer	S3.7	Hydro-Brake®	S3.8	1.2				
240 minute summer	S3.7	Infiltration		3.8				
240 minute summer	S3.8	5.008	S1.19	-2.2	0.577	-0.033	1.1443	
360 minute summer	S1.19	Hydro-Brake®	S1.20	3.8				114.3
15 minute summer	S12.2	1.002	S1.8A	79.8	1.244	0.718	0.2952	
15 minute summer	S12.0	1.000	S12.1	29.1	0.972	0.560	1.6468	
15 minute summer	S12.1	1.001	S12.2	48.5	1.528	0.932	1.8757	

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL Rainfall Methodology Return Period (years) Additional Flow (%) FSR Region M5-60 (mm) Ratio-R CV	rett Mahony Consulting ;ineers Ltd. 54 Lower Sandwith Street blin, D02 WR26 Desig FSR 5 0 Scotland and Ireland 18.000 0.277 1.000	File: SW Network B1-50%.pld Page 1 Network: Catchment B1 20.170 Dirk Kotze Dundrum Central 15/03/2022 Development sign Settings 50% Blockage Maximum Time of Concentration (mins) 30.00 Maximum Rainfall (mm/hr) 50.0 Minimum Velocity (m/s) 1.00 Connection Type Level Inverts Minimum Backdrop Height (m) 0.200 Preferred Cover Depth (m) 1.200 Include Intermediate Ground ✓								
Time of Entry (mins)	4.00	Enforce best pra	actice design rules \checkmark							
Simulation Settings										
Rainfall Meth FSF M5-6 Sun Analysi	odology FSR R Region Scotland and Ir 60 (mm) 18.000 Ratio-R 0.277 nmer CV 1.000 is Speed Normal	Sl eland Drain Do Additional Check Di Check Dis	kip Steady State x wn Time (mins) 240 Storage (m³/ha) 20.0 scharge Rate(s) x scharge Volume x							
Storm Durations										
15 60 1 30 120 2	180360600240480720	960 2160 1440 2880	4320 7200 10080 5760 8640							
Return (ye	a Period Climate Change ars) (CC %) 100 20	Additional Area (A %) 0	Additional Flow (Q %) 0							
	Node S7.1 Online	Hydro-Brake [®] Contro	<u>1</u>							
Flap V Replaces Downstream Invert Level Design Depth Design Flow	alve x Link √ (m) 42.000 (m) 0.600 Min O (I/s) 2.0 Min No	Objective Sump Available Product Number putlet Diameter (m) ode Diameter (mm)	(HE) Minimise upstream storage ✓ CTL-SHE-0073-2000-0600-2000 0.100 1200							
	Node S9.2 Online	Hydro-Brake [®] Contro	<u>I</u>							
Flap V Replaces Downstream Invert Level Design Depth Design Flow	'alve x Link √ (m) 43.125 (m) 1.000 Min O (I/s) 2.0 Min No	Objective Sump Available Product Number Jutlet Diameter (m) ode Diameter (mm)	 (HE) Minimise upstream storage ✓ CTL-SHE-0067-2000-1000-2000 0.100 1200 							
	Node S15.1 Online	e Hydro-Brake [®] Contro	<u>ol</u>							
Flap V Replaces Downstream Invert Level Design Depth Design Flow	'alve x Link √ (m) 43.900 (m) 1.000 Min O (l/s) 2.0 Min No	Objective Sump Available Product Number outlet Diameter (m) ode Diameter (mm)	(HE) Minimise upstream storage ✓ CTL-SHE-0067-2000-1000-2000 0.100 1200							

	Barrett Mahony Consulting			k B1-50%.pfd	Page 2
	Engineers Ltd.		Network: Catchr	ment B1	20.170
	52-54 Lower San	dwith Street	Dirk Kotze		Dundrum Central
	Dublin, D02 WR	26	15/03/2022		Development
	Node	S14.7 Online H	lydro-Brake [®] Con	trol	
FI	lap Valve x		Objective	(HE) Minimise	upstream storage
Replaces Downstre	eam Link 🗸		Sump Available	\checkmark	
Invert I	_evel (m) 43.042	2	Product Number	CTL-SHE-0093	4000-1100-4000
Design D	epth (m) 1.100	Min Out	let Diameter (m)	0.150	
Design F	-low (l/s) 4.0	Min Node	e Diameter (mm)	1200	
	Node	S11.4 Online H	lydro-Brake [®] Cont	trol	
FI	lap Valve x		Objective	(HE) Minimise	upstream storage
Replaces Downstre	eam Link 🗸		Sump Available	\checkmark	
Invert L	Invert Level (m) 43.100			CTL-SHE-0063	2000-1325-2000
Design D	epth (m) 1.325	Min Out	let Diameter (m)	0.075	
Design F	low (l/s) 2.0	Min Node	e Diameter (mm)	1200	
	Node	S10.5 Online H	Iydro-Brake [®] Con	<u>trol</u>	
FI	an Valve x		Objective	(HF) Minimise	upstream storage
Replaces Downstre	eam Link √		Sump Available	√	
Invert L	_evel (m) 42.650)	Product Number	CTL-SHE-0060	2000-1600-2000
Design D	epth (m) 1.600	Min Out	let Diameter (m)	0.075	
Design F	low (l/s) 2.0	Min Node	e Diameter (mm)	1200	
	Node	S10.8 Online H	lydro-Brake [®] Cont	trol	
FI	an Valve - v		Ohiective	(HE) Minimise	unstream storage
Replaces Downstre	eam Link √		Sump Available		upstream storage
Invert L	_evel (m) 42.01	5	Product Number	CTL-SHE-0121	7000-1200-7000
Design D	epth (m) 1.200	Min Out	let Diameter (m)	0.150	
Design F	low (l/s) 7.0	Min Node	e Diameter (mm)	1200	
	Node	e S6.4 Online H	ydro-Brake [®] Cont	<u>rol</u>	
C1	an Valvo - v		Objective	(HE) Minimico	unstroam storago
Replaces Downstr	eam Link		Sumn Available		upstream storage
Invert L	_evel (m) 42.300	0	Product Number	CTL-SHE-0075	2000-0500-2000
Design D	epth (m) 0.500	Min Out	let Diameter (m)	0.100	
Design F	low (l/s) 2.0	Min Node	e Diameter (mm)	1200	
	Node	S7.1 Depth/Ar	ea Storage Struct	ur <u>e</u>	
	. (/!)				
Base Inf Coefficient Side Inf Coefficient	t (m/hr) 0.0000 t (m/hr) 0.0000	0 Safety Fa 0 Porc	ctor 2.0 osity 0.95 T	ime to half emp	Level (m) 42.000 ty (mins)
Depth A	Area Inf Area	Depth Ar	ea Inf Area	Depth Area	Inf Area
(m)	(m²) (m²)	(m) (m	1²) (m²)	(m) (m²)	(m²)
0.000 2	20.5 0.0	0.600 220	0.5 0.0	0.601 0.0	0.0
	Node	S7.1 Depth/Ar	ea Storage Struct	<u>ure</u>	
Daca Inf Coofficient	t (m/br) 0.0000		ctor 20	In control	$a_{1}a_{2}a_{3}a_{4}a_{2}a_{0}a_{0}a_{1}a_{2}a_{1}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2$
Base Int Coefficient	t (m/nr) 0.0000 t (m/hr) 0.0000	o sarety Fa		invert l ime to balf omo	_evel (11) 42.000
Side ini Coenicien			JSILY 0.95	ine to nan emp	uy (111115)

		Barrett Mahony Co	onsulting	File: SW Netw	ork B1-50%.pfd	Page 3				
RM	BARRETT MAHONY	Engineers Ltd.		Network: Cate	chment B1	20.170				
	CIVIL & STRUCTURAL	52-54 Lower Sandy	with Street	Dirk Kotze		Dundrum Central				
		Dublin, D02 WR26		15/03/2022		Development				
	Depth	Area Inf Area	Depth Ar	rea Inf Area	Depth Area	Inf Area				
	(m)	(m ²) (m ²)	(m) (n	n-) (m-)	(m) (m ²)	(m ⁻)				
	0.000 1	.830.0 0.0	0.065 183	30.0 0.0	0.066 0.0	0.0				
		<u>Node S</u>	9.1 Depth/Ar	ea Storage Stru	<u>icture</u>					
		at (as /ba) 0.00000	Cofety Fo							
	Base Inf Coefficien	nt(m/nr) = 0.00000	Safety Fa	ctor 2.0	Invert L	evel(m) = 43.250				
			POIC	JSILY 1.00	Time to nair emp	ly (IIIIIIS)				
	Depth	Area Inf Area	Depth Are	ea Inf Area	Depth Area	Inf Area				
	(m)	(m²) (m²)	(m) (m	²) (m ²)	(m) (m ²)	(m ²)				
	0.000	267.0 0.0	1.050 267	7.0 0.0	1.051 0.0	0.0				
		<u>Node S</u>	9.1 Depth/Ar	ea Storage Stru	<u>icture</u>					
	Base Inf Coefficie	nt (m/hr) 0.00000	Safety Fa	ctor 2.0	Invert L	evel (m) 43.250				
	Side Inf Coefficier	nt (m/hr) 0.00000	Porc	osity 0.95	Time to half emp	ty (mins)				
				-						
	Depth	Area Inf Area	Depth Ar	ea Inf Area	Depth Area	Inf Area				
	(m)	(m²) (m²)	(m) (n	n²) (m²)	(m) (m²)	(m²)				
	0.000 1	.021.0 0.0	0.065 102	21.0 0.0	0.066 0.0	0.0				
Node S15.1 Depth/Area Storage Structure										
	Base Inf Coefficier	nt (m/hr) 0.00000	Safety Fa	ctor 2.0	Invert L	evel (m) 43.900				
	Side Inf Coefficier	nt (m/hr) 0.00000	Porc	osity 0.30	lime to haif emp	cy (mins)				
	Denth	Area Inf Area	Denth Ar	aa Inf Area	Denth Area	Inf Area				
	(m)	(m^2) (m^2)	(m) (m	(m^2)	(m) (m^2)	(m ²)				
	0.000	948.0 0.0	0.700 948	3.0 0.0	0.701 0.0	0.0				
		<u>Node Si</u>	14.7 Depth/A	rea Storage Stru	<u>ucture</u>					
	Base Inf Coefficie	nt (m/hr) 0.26400	Safety Fa	ctor 5.0	Invert L	.evel (m) 43.042				
	Side Inf Coefficier	nt (m/hr) 0.26400	Porc	osity 0.60	Time to half empt	ty (mins) 56				
	Depth	Area Inf Area	Depth Are	ea Inf Area	Depth Area	Inf Area				
	(m)	(m²) (m²)	(m) (m	²) (m²)	(m) (m²)	(m²)				
	0.000	640.0 640.0	1.100 640	0.0 765.0	1.101 0.0	765.0				
		Node Si	11.4 Depth/A	rea Storage Stru	<u>ucture</u>					
	Base Inf Coefficie	nt(m/hr) = 0.00000	Safety Fa	ctor 20	Invert I	evel (m) 13 100				
	Side Inf Coefficie	nt (m/hr) = 0.00000	Porc	osity 1.00	Time to half emp	ty (mins)				
			1010	2100						
	Depth	Area Inf Area	Depth Are	ea Inf Area	Depth Area	Inf Area				
	(m)	(m²) (m²)	(m) (m	²) (m²)	(m) (m²)	(m²)				
	0.000	218.0 0.0	1.325 218	3.0 0.0	1.326 0.0	0.0				
		<u>Node Si</u>	11.4 Depth/A	rea Storage Stru	<u>ucture</u>					
	Base Inf Coefficie	nt (m/hr) 0.00000	Safety Fa	ctor 2.0	Invert L	.evel (m) 43.100				
	Side Inf Coefficier	nt (m/hr) 0.00000	Porc	osity 0.95	Time to half emp	ty (mins)				
		,	1	-	·	· · · ·				

		c II:	E 'L CIA/AL I									
	Barrett Manony	Consulting	File: SW Netw	ork B1-50%.ptd	Page 4							
	Engineers Ltd.		Network: Cato	chment B1	20.170							
CIVIL & STRUCTURAL	52-54 Lower Sar	ndwith Street	Dirk Kotze		Dundrum Central							
	Dublin, D02 WR	26	15/03/2022		Development							
				1								
Depth	Area Inf Area	Depth Ar	ea Inf Area	Depth Area	Inf Area							
(m)	(m²) (m²)	(m) (m	1²) (m²)	(m) (m²)	(m²)							
0.000	1985.0 0.0	0.065 198	5.0 0.0	0.066 0.0	0.0							
Node S10.5 Depth/Area Storage Structure												
Base Inf Coefficie	ent (m/hr) 0.0000	0 Safety Fa	ctor 2.0	Invert L	evel (m) 42.650							
Side Inf Coefficie	ent (m/hr) 0.0000	0 Porc	sity 0.95	Time to half empt	y (mins)							
Depth	Area Inf Area	Depth Ar	ea Inf Area	Depth Area	Inf Area							
(m)	(m²) (m²)	(m) (m	1²) (m²)	(m) (m²)	(m²)							
0.000	1024.0 0.0	0.065 102	4.0 0.0	0.066 0.0	0.0							
Node S10.5 Depth/Area Storage Structure												
Base Inf Coefficie	ent (m/hr) 0.2640	0 Safety Fa	ctor 10.0	Invert L	evel (m) 42.650							
Side Inf Coefficie	ent (m/hr) 0.2640	0 Porc	sity 0.60	Time to half empt	y (mins)							
Depth	Area Inf Area	Depth Are	a Inf Area	Depth Area	Inf Area							
(m)	(m²) (m²)	(m) (m	²) (m²)	(m) (m²)	(m²)							
0.000	385.0 385.0	1.100 385	.0 489.0	1.101 0.0	489.0							
	Node	e S6.4 Depth/Ar	ea Storage Stru	<u>icture</u>								
Base Inf Coefficie	ent (m/hr) 0.2640	0 Safety Fa	ctor 2.0	Invert L	evel (m) 42.300							
Side Inf Coefficie	ent (m/hr) 0.2640	0 Porc	sity 1.00	Time to half empt	y (mins)							
	,	I		·								
Depth	Area Inf Area	Depth Are	a Inf Area	Depth Area	Inf Area							
(m)	(m²) (m²)	(m) (m	²) (m²)	(m) (m²)	(m²)							
0.000	300.0 300.0	0.400 340	.0 330.0	0.401 0.0	330.0							
		1		1								

Barrett Mahony Consulting	File: SW Network B1-50%.pfd	Page 5
Engineers Ltd.	Network: Catchment B1	20.170
52-54 Lower Sandwith Street	Dirk Kotze	Dundrum Central
Dublin, D02 WR26	15/03/2022	Development

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.81%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	St	tatus
	Nod	e (mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)		
960 minute summer	S15.	945	44.580	0.430	0.5	0.4866	0.000	0 SURC	HARGED
960 minute summer	S15.	1 930	44.580	0.680	18.8	199.6667	0.000	0 FLOO	D RISK
15 minute summer	S15.	2 11	44.272	0.622	23.2	0.7035	0.000	0 SURC	HARGED
15 minute summer	S14.	0 11	44.195	0.395	23.7	0.4593	0.000	0 SURC	HARGED
15 minute summer	S14.	1 11	44.202	0.477	54.0	0.6861	0.000	0 SURC	HARGED
15 minute summer	S14.	2 11	44.272	0.810	124.6	3.2420	0.000	0 SURC	HARGED
15 minute summer	S14.	3 11	44.141	0.784	145.8	1.6704	0.000	0 SURC	HARGED
15 minute summer	S14.4	4 11	44.070	0.720	42.1	1.4233	0.000	0 SURC	HARGED
15 minute summer	S14.	5 11	43.964	0.772	207.5	1.5993	0.000	0 SURC	HARGED
15 minute summer	S14.	5 11	43.638	0.520	202.3	0.7442	0.000	0 SURC	HARGED
240 minute summer	S14.	7 188	43.615	0.573	94.9	221.4548	0.000	0 SURC	HARGED
60 minute summer	S14.	8 37	43.937	1.083	16.3	1.8235	0.000	0 SURC	HARGED
4320 minute summe	r S11.	3 2520	45.150	1.950	5.6	7.2053	37.099	4 FLOO	D
2880 minute summe	r S11.	4 1740	45.150	2.050	14.4	419.7941	5.740	4 FLOO	D
60 minute summer	S11.	5 39	43.944	1.154	27.5	2.0486	0.000	0 SURC	HARGED
60 minute summer	S11.	5 39	43.928	1.202	48.8	2.1368	0.000	0 SURC	HARGED
15 minute summer	S10.	D 11	45.130	1.130	33.5	1.2780	3.701	6 FLOO	D
15 minute summer	S10.	1 11	45.254	1.604	34.1	1.8146	0.000	0 SURC	HARGED
15 minute summer	S10.	2 11	45.321	2.121	41.7	2.3984	0.000	0 FLOO	D RISK
15 minute summer	S10.	3 11	45.419	2.319	53.5	2.6230	0.000	0 FLOO	D RISK
15 minute summer	S10.4	4 11	45.517	2.517	200.8	9.2413	0.000	0 FLOO	D RISK
960 minute summer	S10.	5 705	43.687	1.037	31.8	305.6826	0.000	0 SURC	HARGED
60 minute summer	S10.	5 39	43.928	1.371	65.9	3.8066	0.000	0 SURC	HARGED
Link Event	US	Link	DS	Outfl	low Ve	locity Flo	w/Cap	Link	Discharge
Link Event (Upstream Depth)	US Node	Link	DS Node	Outfl e (I/s	low Ve s) (I	locity Flo m/s)	w/Cap	Link Vol (m³)	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer	US Node S15.0	Link 1.000	DS Node S15.1	Outfl e (I/s	low Ve s) (1 -0.5 -	locity Flo m/s) 0.015	-0.016	Link Vol (m³) 3.0518	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer	US Node S15.0 S15.1	Link 1.000 Hydro-Brake	DS Node S15.1 e® S15.2	Outfl e (I/s	l ow Ve s) (ı ∙0.5 - 2.0	locity Flo m/s) 0.015	• w/Cap -0.016	Link Vol (m³) 3.0518	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2	Link 1.000 Hydro-Brak 1.002	DS Node S15.1 e® S15.2 S14.2	Outfl e (I/s	low Ve 5) (i -0.5 - 2.0 21.6	locity Flo m/s) 0.015 0.473	-0.016	Link Vol (m ³) 3.0518 2.0209	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0	Link 1.000 Hydro-Brak 1.002 2.000	DS Node S15.1 e® S15.2 S14.2 S14.1	Outfl e (I/s 2 -2 2 -2	low Ve 6) (1 0.5 - 2.0 1.6 2.5 -	locity Flo m/s) 0.015 0.473 0.407	-0.016 -0.276 -0.241	Link Vol (m ³) 3.0518 2.0209 0.7422	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1	Link 1.000 Hydro-Brake 1.002 2.000 2.001	DS Node S15.1 e® S15.2 S14.2 S14.1 S14.2	Outfl e (I/s 2 -2 2 -2 2 -2 2 -4	low Ve 5) (1 0.5 - 2.0 1.6 2.5 - 3.0 -	locity Flo m/s) 0.015 0.473 0.407 0.614	-0.016 -0.276 -0.241 -0.549	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003	DS Node S15.1 e® S15.2 S14.2 S14.1 S14.2 S14.3	Outfl e (1/s 2 -2 2 -2 2 -4 3 11	low Ve s) (1 2.0 1.6 2.5 - 3.0 - 1.1	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007	-0.016 -0.276 -0.241 -0.549 0.966	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004	DS Node S15.1 s14.2 S14.2 S14.2 S14.3 S14.3 S14.5	Outfl e (I/s 2 -2 2 -2 1 -2 2 -4 3 11 5 13	low Ve 5) (1 -0.5 - 2.0 1.6 2.5 - 3.0 - 1.1 9.3	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263	-0.016 -0.276 -0.241 -0.549 0.966 1.212	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000	DS Node S15.1 S15.2 S14.2 S14.2 S14.3 S14.3 S14.5 S14.5	Outfl e (1/s 2 -2 2 -2 2 -4 3 11 5 13 5 3	low Ve 5) (1 -0.5 - 2.0 1.6 2.5 - 3.0 - 1.1 9.3 57.2	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005	DS Node S15.1 S14.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.6	Outfl (1/s 2 -2 2 -2 2 -2 2 -4 3 11 3 13 5 3 5 20	low Ve 5) (1 -0.5 - 2.0 1.6 2.5 - 3.0 - 1.1 9.3 57.2 2.3	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7	Outfl (1/s 2 -2 2 -2 2 -2 4 -2 2 -4 3 11 5 13 5 20 7 19	low Ve 5) (1 0.5 - 2.0 1.6 2.5 - 3.0 - 1.1 9.3 7.2 9.3 9.0	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261	-0.276 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 240 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brake	DS Node S15.1 e® S15.2 S14.2 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 e® S14.8	Outfl (1/9 -2 -2 -2 -2 -4 3 11 5 13 5 20 7 19 3	low Ve 5) (1 0.5 - 2.0 1.6 2.5 - 3.0 - 1.1 9.3 57.2 12.3 99.0 4.0	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7	Link 1.000 Hydro-Braka 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Braka Infiltration	DS Node S15.1 S14.2 S14.2 S14.3 S14.2 S14.3 S14.5 S14.6 S14.6 S14.7 e [®] S14.8	Outfl (1/9 -2 -2 -2 -2 -2 -4 -11 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	low Ve 6) (i -0.5 - 2.0 - 21.6 - -2.5 - -3.0 - 1.1 - 39.3 - 37.2 - 92.3 - 99.0 - 4.0 - 0.3 -	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute summer 60 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.8	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brake Infiltration 1.008	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 e® S14.8	Outfl (1/s 2 -2 2 -2 2 -2 2 -2 2 -4 3 11 5 13 5 20 7 19 3 1 5 1 5 1 5 20 7 19 3 1 5 1 1 5 1 1 5 20 7 19 3 1 5 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	low Ve 5) (1 -0.5 - 2.0 1.6 2.5 - 3.0 - 1.1 9.3 7.2 02.3 9.0 4.0 0.3 4.7	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261 0.737	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119 1.3428	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute summer 240 minute summer 60 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.8 S11.3	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brake Infiltration 1.008 4.000	DS Node S15.1 S14.2 S14.2 S14.3 S14.2 S14.3 S14.5 S14.6 S14.7 e [®] S14.8 S11.5 S11.4	Outfl (1/s 2 -2 2 -2 2 -2 2 -4 3 11 3 3 5 3 5 20 7 19 8 1 1 5 1 1 5 1 1 5 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	low Ve 5) (1 -0.5 - 2.0 1.6 2.5 - 3.0 - 1.1 9.3 7.2 2.3 9.0 4.0 0.3 4.7 5.4	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261 0.737 0.416	-0.276 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732 0.230 0.129	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119 1.3428 0.5409	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute summer 240 minute summer 240 minute summer 240 minute summer 240 minute summer 240 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brake Infiltration 1.008 4.000 Hydro-Brake	DS Node S15.1 S14.2 S14.2 S14.3 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 e® S14.8 S11.5 S11.4 e® S11.5	Outfl (1/3 2 -2 2 -2 2 -4 3 11 5 13 5 20 7 19 3 1 5 1 5 1 5 1 5 1 5 1 6 1 7 19 7 19 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	low Ve 5) (1 0.5 - 2.0 1.6 2.5 - 3.0 - 1.1 9.3 7.2 9.3 9.0 4.0 0.3 4.7 5.4 2.4	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261 0.737 0.416	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732 0.230 0.129	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119 1.3428 0.5409	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute summer 240 minute summer 240 minute summer 240 minute summer 60 minute summer 2880 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brake Infiltration 1.008 4.000 Hydro-Brake 1.009	DS Node S15.1 S15.2 S14.2 S14.3 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 e [®] S11.5 S11.4 e [®] S11.5 S11.6	Outfl (1/9 2 -2 2 -2 2 -4 3 11 5 13 5 20 7 19 3 1 5 1 5 1 5 1 6 1 5 1 6 1 7 19 7 19 8 1 1 1 5 1 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	low Ve 6) (i 0.5 - 2.0 - 1.6 - 3.0 - 1.1 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.4.0 - 0.3 - 4.7 - 5.4 - 2.4 -	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261 0.737 0.416 0.689	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732 0.230 0.129 0.153	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119 1.3428 0.5409 2.1083	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute summer 240 minute summer 240 minute summer 60 minute summer 2880 minute summer 60 minute summer 60 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brake Infiltration 1.008 4.000 Hydro-Brake 1.009 1.010	DS Node S15.1 S15.2 S14.2 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 e* S11.5 S11.4 e* S11.5 S11.6 S10.6	Outfl (1/9 -2 -2 -2 -2 -4 3 11 5 13 5 20 7 19 3 5 1 5 1 5 1 5 -4 -4 -5 -1 -2 -4 -2 -4 -2 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	low Ve 5) (1 0.5 - 2.0 1.6 2.5 - 3.0 - 1.1 9.3 57.2 9.0 4.0 0.3 4.7 5.4 2.4 7.5 6.1	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261 0.737 0.416 0.689 0.670	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732 0.230 0.129 0.153 -0.401	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119 1.3428 0.5409 2.1083 3.2794	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute summer 240 minute summer 240 minute summer 60 minute summer 2880 minute summer 60 minute summer 15 minute summer 15 minute summer 2880 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6 S10.0	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brake Infiltration 1.008 4.000 Hydro-Brake 1.009 1.010 5.000	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.6 S14.7 e [®] S11.5 S11.4 e [®] S11.5 S11.6 S11.6 S10.6 S10.1	Outfl (1/s 2 -2 2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	low Ve 6) (i -0.5 - 2.0 - 1.6 - 2.0 - 3.0 - 1.1 - 3.0 - 1.1 - 3.0 - 1.1 - 9.3 - 9.0 - 4.0 - 0.0.3 - .4.7 - 5.4 - 2.4 - .7.5 - .6.1 - .3.5 -	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261 0.737 0.416 0.689 0.670 0.842	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732 0.230 0.129 0.153 -0.401 -0.915	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119 1.3428 0.5409 2.1083 3.2794 0.9056	Discharge Vol (m³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute summer 240 minute summer 240 minute summer 60 minute summer 1580 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6 S10.0 S10.1	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brake Infiltration 1.008 4.000 Hydro-Brake 1.009 1.010 5.000 5.001	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.6 S14.7 e [®] S11.5 S11.4 e [®] S11.5 S11.6 S11.6 S10.6 S10.1 S10.2	Outfl (1/s 2 -2 2 -2 2 -4 3 11 5 13 5 20 7 19 3 1 5 1 5 1 5 1 5 -4 5 -4 5 -4 5 -3 2 -3	low Ve 6) (i -0.5 - 2.0 - 1.6 - 2.5 - 3.0 - 1.1 - 3.0 - 1.1 - 9.3 - 9.3 - 4.0 - 0.3 - 4.7 - 5.4 - 2.4 - 7.5 - 6.1 - - - - -	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261 0.737 0.416 0.689 0.670 0.842 0.857	-0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732 0.230 0.129 0.153 -0.401 -0.915 -0.931	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119 1.3428 0.5409 2.1083 3.2794 0.9056 0.4046	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute summer 240 minute summer 240 minute summer 60 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6 S10.0 S10.1 S10.2	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brake Infiltration 1.008 4.000 Hydro-Brake 1.009 1.010 5.001 5.001 5.002	DS Node S15.1 S15.2 S14.2 S14.3 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 e [®] S11.5 S11.4 e [®] S11.5 S11.6 S10.6 S10.1 S10.2 S10.3	Outfl (1/s 2 -2 2 -2 2 -4 3 11 3 3 3 3 5 20 7 19 3 1 5 1 5 1 5 1 5 1 5 -4 4 -3 2 -3 3 -4	low Ve 0.5 - 2.0 - 2.1.6 - 3.0 - -1.1 - 3.0 - 1.1 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.4.0 - .0.3 - .4.7 - .6.1 - .3.5 - .4.7 - .4.1 - .4.1 -	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261 0.737 0.416 0.689 0.670 0.842 0.857 1.050	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732 0.230 0.129 0.153 -0.401 -0.915 -0.931 -1.140	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119 1.3428 0.5409 2.1083 3.2794 0.9056 0.4046 0.6835	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute summer 240 minute summer 240 minute summer 60 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6 S10.0 S10.1 S10.2 S10.3	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brake Infiltration 1.008 4.000 Hydro-Brake 1.009 1.010 5.000 5.001 5.002 5.003	DS Node S15.1 S15.2 S14.2 S14.3 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 e* S11.5 S11.4 e* S11.5 S11.4 S11.5 S11.6 S10.6 S10.1 S10.2 S10.3 S10.4	Outfl (1/9 2 -2 2 -2 2 -4 3 11 5 13 5 20 7 19 3 1 5 1 5 1 5 1 5 1 5 1 6 1 5 1 6 1 7 19 8 1 1 5 -4 4 -3 8 -4 5 -3 8 -4 5 -5	low Ve 6) (i 0.5 - 2.0 - 1.6 - 2.3.0 - 3.0 - 1.1 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 4.0 - 0.3 - 4.7 - 3.5 - 44.1 - - - 3.5 -	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261 0.737 0.416 0.689 0.670 0.842 0.857 1.050 1.345	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732 0.230 0.129 0.153 -0.401 -0.915 -0.931 -1.140 -1.461	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119 1.3428 0.5409 2.1083 3.2794 0.9056 0.4046 0.6835 0.6597	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute summer 240 minute summer 240 minute summer 60 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.8 S11.3 S11.4 S11.5 S11.6 S10.0 S10.1 S10.2 S10.3 S10.4	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brake Infiltration 1.008 4.000 Hydro-Brake 1.009 1.010 5.000 5.001 5.002 5.003 5.004	DS Node S15.1 S14.2 S14.2 S14.2 S14.3 S14.5 S14.5 S14.6 S14.7 e* S14.8 S14.7 e* S11.4 e* S11.5 S11.4 S11.6 S10.6 S10.1 S10.2 S10.3 S10.4 S10.5	Outfl (1/9 2 -2 2 -2 2 -4 3 11 5 13 5 20 7 19 3 1 5 11 5 1 5 1 5 -4 4 -3 2 -3 3 -4 4 -5 5 12	low Ve 6) (i 0.5 - 2.0 - 1.6 - 2.3.0 - 1.1 - 9.3 - 1.1 - 9.3 - 1.1 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.3 - 9.4.0 - 0.3 - 4.7.5 - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261 0.737 0.416 0.689 0.670 0.842 0.857 1.050 1.345 3.264</td> <td>-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732 0.230 0.129 0.153 -0.401 -0.915 -0.931 -1.140 -1.461 3.545</td> <td>Link Vol (m³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119 1.3428 0.5409 2.1083 3.2794 0.9056 0.4046 0.6835 0.6597 1.4004</td> <td>Discharge Vol (m³)</td>	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261 0.737 0.416 0.689 0.670 0.842 0.857 1.050 1.345 3.264	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732 0.230 0.129 0.153 -0.401 -0.915 -0.931 -1.140 -1.461 3.545	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119 1.3428 0.5409 2.1083 3.2794 0.9056 0.4046 0.6835 0.6597 1.4004	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute summer 240 minute summer 240 minute summer 60 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S11.3 S11.4 S11.5 S11.6 S10.0 S10.1 S10.2 S10.3 S10.4 S10.5	Link 1.000 Hydro-Braka 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Braka Infiltration 1.008 4.000 Hydro-Braka 1.009 1.010 5.000 5.001 5.002 5.003 5.004 Hydro-Braka	DS Node S15.1 S14.2 S14.2 S14.3 S14.2 S14.3 S14.5 S14.6 S14.7 S14.6 S14.6 S14.6 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.6 S14.6 S14.7 S14.6 S14.6 S14.6 S14.6 S14.6 S14.7 S14.6 S14.7 S14.6 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S14.7 S14.6 S10.6 S10.	Outfl (1/s 2 -2 2 -2 2 -4 3 11 5 13 5 20 7 19 5 1 5 1 5 1 5 -4 -3 2 -3 3 -4 -3 2 -3 5 12 5 12 5 12	low Ve 6) (i -0.5 - 2.0 - 2.1.6 - -2.5 - -3.0 - -1.1 - -9.3 - -1.1 - -2.5 - -1.1 - -2.3 - -2.3 - -2.3 - -2.3 - -2.3 - -2.3 - -3.5 - -4.7 - -5.4 - -3.5 - -4.1.7 - -3.5 - -9.8 1.5	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261 0.737 0.416 0.689 0.670 0.842 0.857 1.050 1.345 3.264	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732 0.230 0.129 0.153 -0.401 -0.915 -0.931 -1.140 -1.461 3.545	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119 1.3428 0.5409 2.1083 3.2794 0.9056 0.4046 0.6835 0.6597 1.4004	Discharge Vol (m ³)
Link Event (Upstream Depth) 960 minute summer 960 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 240 minute summer 240 minute summer 240 minute summer 15 minute summer	US Node S15.0 S15.1 S15.2 S14.0 S14.1 S14.2 S14.3 S14.4 S14.5 S14.6 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.7 S14.5 S11.6 S10.0 S10.1 S10.2 S10.3 S10.4 S10.5 S10.5	Link 1.000 Hydro-Brake 1.002 2.000 2.001 1.003 1.004 3.000 1.005 1.006 Hydro-Brake Infiltration 1.008 4.000 Hydro-Brake 1.009 1.010 5.000 5.001 5.002 5.003 5.004 Hydro-Brake Infiltration	DS Node S15.1 S15.2 S14.2 S14.1 S14.2 S14.3 S14.5 S14.6 S14.7 e [®] S11.5 S11.6 S10.6 S10.4 S10.5 S10.4 S10.5 S10.4 S10.5 S10.4	Outfl (1/s 2 -2 -2 -4 -2 -4 -1 -2 -4 -3 -4 -3 -4 -3 -4 -5 -4 -5 -4 -5 -2 -4 -5 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	low Ve 6) (i -2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 3.0 - 3.0 - 3.0 - 3.0 - 3.0 - 9.3.0 - 4.0 - 0.0.3 - 4.0 - 0.0.3 - 4.7 - 5.4 - 2.4 - 7.5 - 66.1 - - - - - - - - - - - - - - - - - - - - -	locity Flo m/s) 0.015 0.473 0.407 0.614 1.007 1.263 0.935 1.834 2.261 0.737 0.416 0.689 0.670 0.842 0.857 1.050 1.345 3.264	-0.016 -0.276 -0.241 -0.549 0.966 1.212 0.878 1.760 1.732 0.230 0.129 0.153 -0.401 -0.915 -0.931 -1.140 -1.461 3.545	Link Vol (m ³) 3.0518 2.0209 0.7422 3.7041 3.4849 2.6558 0.9432 2.4345 2.0119 1.3428 0.5409 2.1083 3.2794 0.9056 0.4046 0.6835 0.6597 1.4004	Discharge Vol (m ³)

	Barrett Mahony Consulting					File: SW Network B1-50%.pfd				Page 6			
	Engi	neers Ltd.			Network	: Catchr	nent B1	20.1	20.170				
CIVIL & STRUCTURAL	52-5	4 Lower Sa	andwith	n Street	Dirk Kotz	ze		Dune	drum Cei	ntral			
	Dub	lin, D02 W	R26		15/03/2	022		Deve	lopment	t			
Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.81%													
Node Event		US	Peak	Level	Depth	Inflow	Node	Flood	St	atus			
	1	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)					
120 minute summer	S10	.7	68	43.890	1.571	37.2	4.0155	4.7890	FLOOI)			
60 minute summer	S6.4	1	43	42.377	0.077	40.3	24.0734	0.0000	OK				
60 minute summer	S10	.8	38	43.907	1.892	23.3	3.3429	0.0000	SURCH	ARGED			
15 minute summer	00	TB1	1	41.972	0.000	7.5	0.0000	0.0000	OK				
15 minute summer	S8.0)	10	42.895	0.095	20.1	0.1874	0.0000	ОК				
15 minute summer	S23	.0	10	42.923	0.123	31.1	0.1996	0.0000	OK				
15 minute summer	S8.1	L	10	42.848	0.248	103.6	0.5926	0.0000	ОК				
15 minute summer	S7.0)	10	42.707	0.107	20.1	0.1516	0.0000	ОК				
2160 minute summer	S7.1	L	1500	42.591	0.591	10.2	238.8443	0.0000	SURCH	HARGED			
15 minute summer	00	Г4	1	41.980	0.000	0.5	0.0000	0.0000	OK				
2160 minute summer	S9.0)	1560	44.780	0.780	7.6	5.1351	0.0000	FLOOI	O RISK			
1440 minute summer	10.0	000:50%	1170	44.780	0.848	15.3	0.0000	0.0000	SURCH	HARGED			
1440 minute summer	S9.1	L	1200	44.780	1.530	22.4	348.4314	0.0000	FLOOI	O RISK			
1440 minute summer	S9.2	2	1170	44.780	1.655	3.1	1.8718	0.6528	FLOOI)			
15 minute summer	OU	Τ5	1	43.013	0.000	2.0	0.0000	0.0000	OK				
Link Event	US	Link		DS	Outflo	ow Ve	locity Flov	v/Cap	Link	Discharge			
(Upstream Depth) N	ode			Node	(I/s) (ı	m/s)	١	/ol (m³)	Vol (m³)			
120 minute summer Si	10.7	1.012	1	S10.8	22	1.1	0.583	0.113	7.8049				
60 minute summer Se	5.4	Hydro-Bra	ake®	S10.8	(0.0							
60 minute summer Se	5.4	Infiltratio	n		11	1.1							
60 minute summer S2	10.8	Hydro-Bra	ake®	OUTB1	8	3.7				111.8			
		7 000		50 A	2		0.400	0.004	4 2000				
15 minute summer St	3.0	7.000		58.1	20).1	0.496	0.221	1.2098				
15 minute summer S2	23.0	8.000		58.1	3. 107	1.0	1.236	0.279	0.1534				
15 minute summer St	5.1 7 0	7.001		57.1 57.1	102	2.6	1.735	0.923	1.9026				
2160 minute summer	7.0 7.1	9.000	- ko®	57.1 OUT4	20	J. I	1.155	0.387	0.1322	167.0			
2160 minute summer S	/.1	пушо-ві	ake	0014	4	2.0				167.9			
2160 minute summer S	9.0	10.000		10.000:50%	6	7.6	0.743	0.068	0.4817				
2160 minute summer SS	9.0	10.000		S9.1	12	2.3	0.994	0.111	0.4817				

1440 minute summer S9.1

1440 minute summer S9.2

10.001

S9.2

Hydro-Brake[®] OUT5

3.1

2.5

0.182

0.037

1.5923

177.4

	Barrett Mahony Consulting	File: SW Net	File: SW Network B2-50%.pfd Page 1			
	Engineers Ltd.	Network: Ca	: Catchment B2 20.170			
	Dublin. D02 WR26	15/03/2022		Dundrum Central Development		
	De	sign Settings	50% BIO	скаде		
Rainfall Methodol	any ESP	Maximum Time	of Concentration (r	ninc) 30.00		
Return Period (vea	ars) 5	Maximum rime	ximum Rainfall (mn	n/hr) 50.0		
Additional Flow	(%) 0		Minimum Velocity (m/s) 1.00		
FSR Reg	ion Scotland and Ireland		Connection	Type Level Soffits		
M5-60 (m	m) 18.000	Minimu	um Backdrop Heigh	t (m) 0.200		
Ratio	CV 1.000		eterred Cover Depti de Intermediate Gro	1 (m) 1.200		
Time of Entry (mi	ns) 4.00	Enforce b	est practice design	rules 🗸		
	<u>Simu</u>	<u>llation Settings</u>				
Rainfall	Methodology FSR		Skip Steady Stat	te x		
	FSR Region Scotland and	l Ireland Dra	in Down Time (min	s) 240		
	M5-60 (mm) 18.000	Addit	ional Storage (m³/h	a) 20.0		
	Ratio-R 0.277	Che	eck Discharge Rate(s) x		
А	nalysis Speed Normal	Che	ck Discharge volun	ie x		
	, ,	1				
15 60	Sto	rm Durations	4220 720	0 10000		
30 120	240 480 720	1440 2880	4320 720 5760 864	0 10080		
			,	-		
R	eturn Period Climate Chan	ge Additional Ar	ea Additional Flo	W		
	(years) (CC %)	(A %)	(Q %)	0		
	100	20	0	0		
	<u>Node Tank_K On</u>	line Hydro-Brake®	<u>Control</u>			
		Ohioat				
Replaces Downsti	ream Link 🗸	Sump Availat	ive (HE) Minimise ble √	upstream storage		
Invert	Level (m) 39.600	Product Numb	per CTL-SHE-0042	-1000-1600-1000		
Design [Depth (m) 1.600 Mir	n Outlet Diameter (m) 0.075			
Design	Flow (l/s) 1.0 Min	Node Diameter (m	m) 1200			
	Node S4.7 Onli	ne Hvdro-Brake [®] C	ontrol			
F	lap Valve x	Objecti	ve (HE) Minimise	upstream storage		
Replaces Downst	ream Link √	Sump Availat	ole √	2000 1600 2000		
Design [Depth (m) 1.600 Mir	n Outlet Diameter (m) 0.075	-2000-1000-2000		
Design	Flow (I/s) 2.0 Min	Node Diameter (m	m) 1200			
	Node Tank_K De	<u>pth/Area Storage S</u>	tructure			
Base Inf Coefficier	nt (m/hr) 0.00000 Safe	ty Factor 2.0	Invert	Level (m) 39.600		
Side Inf Coefficier	nt (m/hr) 0.00000	Porosity 1.00	Time to half emp	oty (mins)		
Denth	Area Inf Area Denth	Area Inf Area	Denth Area	Inf Area		
(m)	(m^2) (m^2) (m)	(m ²) (m ²)	(m) (m ²)	(m²)		
0.000	303.8 0.0 1.200	303.8 0.0	1.201 0.0	0.0		
	Node S4.7 Dept	h/Area Storage Str	ucture			
Rase Inf Coefficier	nt (m/hr) 0 26400 Safe	ty Factor 5.0	Invort	level (m) 38 933		
Side Inf Coefficier	nt (m/hr) 0.26400	Porosity 0.95	Time to half emp	ty (mins)		
	Flow+ v10.3 Copyright © 1	988-2022 Causewa	y Technologies Ltd			

BM	BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL	Engineers Ltd. 52-54 Lower Sandwith Street Dublin, D02 WR26			e: SW Netwo twork: Catch k Kotze /03/2022	nment B2	.pta	Page 2 20.170 Dundrum Central Development
	Depth (m) 0.000	Area Inf A (m²) (m ² 169.7 16	rea Depth ?) (m) 9.7 1.600	Area (m²) 169.7	Inf Area (m²) 267.0	Depth (m) 1.601	Area (m²) 0.0	Inf Area (m²) 267.0

BARRETT MAHONY CONSULTING ENGINEERS CIVIL & STRUCTURAL	Engineers I 52-54 Lowe Dublin, DO	Ltd. er Sandwi 2 WR26	th Street	Netwo Dirk K 15/03	ork: Catc otze /2022	hment B2	alance: 9	ondrum Central evelopment
Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
1E minuto summor	Node	(mins)	(m)	(m)	(I/S)	VOI (m°)	(m ²)	
15 minute summer	54.0 S/L 1	10	40.805	0.115	28.0	0.2144	0.0000	
15 minute summer	54.1 S4.2	10	40.830	0.100	35.7	0.2755	0.0000) OK
15 minute summer	54.3	11	40.742	0.259	35.3	0.2933	0.0000) SURCHARGED
15 minute summer	S4.4	11	40.600	0.392	68.1	0.9450	0.0000	SURCHARGED
15 minute summer	S22.0	10	40.761	0.761	86.7	2.0349	0.0000	SURCHARGED
4320 minute summ	er Tank K	3540	40.723	1.123	7.5	346.4813	0.0000	SURCHARGED
720 minute summe	r S4.5	540	40.295	0.974	29.4	2.2963	0.0000	SURCHARGED
720 minute summe	r S4.6	540	40.295	1.113	33.6	2.1720	0.0000	SURCHARGED
15 minute summer	OUTB2	1	38.744	0.000	1.5	0.0000	0.0000) ОК
720 minute summe	r S4.7	540	40.294	1.361	33.2	221.4356	0.0000	SURCHARGED

(opstream beptin)	Nouc		nouc	(1) 3)	(11) 3)		••• ()	•••••••••••••••••••••••••••••••••••••••
15 minute summer	S4.0	8	S4.1	18.3	0.718	0.431	0.3328	
15 minute summer	S4.1	7	S4.2	27.9	0.877	0.658	0.2317	
15 minute summer	S4.2	6	S4.3	35.3	1.176	0.833	0.7734	
15 minute summer	S4.3	5	S4.4	32.8	0.868	0.774	1.6388	
15 minute summer	S4.4	4	S4.5	61.9	1.558	1.191	1.4449	
15 minute summer	S22.0	9	S4.5	82.8	2.082	1.593	1.1068	
4320 minute summer	Tank_K	Hydro-Brake [®]	S4.5	0.9				
720 minute summer	S4.5	3	S4.6	29.0	0.975	0.145	1.5370	
720 minute summer	S4.6	2	S4.7	33.2	1.030	0.166	2.7423	
720 minute summer	S4.7	Hydro-Brake [®]	OUTB2	1.9				83.8
720 minute summer	S4.7	Infiltration		3.7				

Appendix 7 Contributing Areas

20.170 - Dundrum SW Drainage

Drained Area Summary

			Total unfactored	Surface	CV Value	Surface	CV Value	Surface	CV Value	Surface	CV Value	Surface	CV Value	Total Reduced	
Cat	chment	Manhole Ref	Manhole Ref area	areas m ²	Roof	0.95	(Extensive or	0.8	Road + Footpath	0.9	Permeable Paving	0.8	Landscape	0.3	Areas m
						Intensive)				Ű					
		\$7.0	1100	207.0	277.0	50/ 5	477.0					1100.0	330.0	330.0	
	Tapk C	57.1	994	397.8	377.9	596.5	477.2					1100.0	220.0	855.	
	I di ik C	58.U \$9.1	1100	207.9	277.0	506 5	477.2		-			1100.0	330.0	330.	
		\$23.0	637	377.0	377.7	637.0	509.6							509/	
		520.0	3587	422.0	400.9	1655.0	1324.0		-			1510.0	453.0	2177	
C		\$9.1	2566	422.0	400.7	633.0	506.4					1510.0	453.3	1360 (
C	Tank B	\$9.2	0	12210	10017	00010	00011					101110	10010	0.0	
Α		\$9.3	0											0.0	
-	Attenuetien F	\$15.0	0											0.0	
	Attenuation F	\$15.1	3437	874.0	830.3	1615.0	1292.0			948.0	758.4			2880.	
C		\$14.0	30							30.0	24.0			24.0	
C		\$14.1	204					204.0	183.6					183.0	
Н		\$14.2	2146	596.0	566.2			1268.0	1141.2	282.0	225.6			1933.0	
	Tank A	\$14.3	763					763.0	686.7					686.	
M		\$14.4	2286									2286.0	685.8	685.8	
Г		\$14.5	2286									2286.0	685.8	685.8	
E		\$14.6	0					000.0	017.0			050.0	205.0	0.0	
N		S14.7	1858	455.0		2705.2	2024.2	908.0	817.2			950.0	285.0	2024	
-	Tank E	\$11.3 \$11.4	4450	1215.2	1154 4	3/95.3 002 F	3030.2							3030.	
	<u> </u>	\$10.0	2208	1213.2	0.0	772.3	0.0							0.0	
		\$10.0	0		0.0		0.0							0.0	
		\$10.2	0		0.0		0.0							0.0	
R	Tank D	S10.3	0		0.0		0.0							0.0	
		\$10.4	3973	770.6	732.1	3202.4	2561.9							3294.0	
1		S10.5	2292					1531.0	1377.9			761.0	228.3	1606.2	
		S14.8	310					310.0	279.0					279.0	
		\$11.5	111					111.0	99.9					99.9	
		\$11.6	111					111.0	99.9					99.9	
		\$10.6	1101					1001.0	900.9	100.0	80.0			980.9	
		\$10.7	693					693.0	623.7			057.0	107.1	623.7	
	totals	56.4	1262					905.0	814.5			357.0	107.1	921.0	
C	lotais	\$4.0	40500							260.0	215.2	205.0	88 5	27490.0	
A		S4.1	432							62.5	50.0	369.0	110.7	160.	
Т		\$4.2	144					144.0	129.6					129.6	
С	Tank C	\$4.3	0											0.0	
H	Talik G	S4.4	727					589.0	530.1	138.0	110.4			640.5	
E		\$4.5	1148					843.0	758.7	305.0	244.0			1002.7	
Ν		\$4.6	952	275.6	261.8	413.4	330.7	263.0	405.0	110.0	99.0			592.5	
Т		522.0 S4.6 Tank	2421	406.8	386.5	1068.2	1574.6	451.0	403.9	110.0	00.0	46.0	13.8	107/ 9	
В	Tank K	S1.0 Tank	1564	198.2	188.3	1319.8	1055.8					46.0	13.8	1257.9	
2		\$1.2 to \$22	1603			· · · ·		674.0	606.6	78.0	62.4	851.0	255.3	924.3	
R	totals		10116											7480.7	
		\$2.0	848	298.0	283.1			550.0	495.0					778.1	
		\$2.1	439					323.0	290.7	116.0	92.8			383.5	
		S1.7	0	225.0	200.0									0.0	
		51.8 \$1.9	325	325.0	308.8			251.0	215.0					308.8	
C		\$1.10	355		1			281.0	252.9	73.7	58.9			311.8	
Δ		\$1.11	246		1			172.0	154.8	73.7	58.9			213.7	
		\$1.12	246					172.0	154.8	73.7	58.9			213.	
Т		\$1.13	731					386.0	347.4	345.0	276.0			623.4	
	Tank J	S1.14	0											0.0	
I H		\$1.15 \$1.16	0					OF 0	06.0					0.0	
		\$1.17	145					70.0 144 5	130.1					130.1	
U U		S1.18	194					193.7	174.3					174.3	
N/I		S1.19	355					355.0	319.5					319.5	
IVI		\$1.20	0											0.0	
F		\$12.0	556					524.5	472.1	31.0	24.8			496.9	
		\$12.1	556	271.2	25.2.7			524.5	472.1	31.0	24.8			496.9	
N		S12.2	899	3/1.3	352.7			497.0	447.3	31.0	24.8			824.8	
	Tank H	\$1.7A \$12.2	482	371.3	502.7	2070 0	3102.4	111.0	99.9			780.0	2310	4005.0	
ΙT	Tarik H	\$3.0	857	148.5	141 1	3070.2	5102.0	633.0	569.7	75.0	60.0	700.0	204.0	770.8	
		\$3.1	573	244.0	231.8			329.0	296.1		00.0			527.9	
		\$3.2	71					70.7	63.6					63.0	
Λ		\$3.3	0											0.0	
А		\$3.4	0											0.0	
		\$3.5	0	130.0	101.1	227.0	100 (0.0	
		\$3.0 \$3.7	3/5	138.0	131.1	237.0	189.6							320.1	
		\$3.8	0											0.0	
			14050											11818	
	totals		14037											1101010	

Average CV value 0.72

Appendix 8 SW Audit Feedback Form

JBA Project Code2021s1635ContractSHD, Dundrum CMH, Dundrum, Co DublinClientLand Development AgencyPrepared byChris WasonSubjectStormwater Audit Stage 1 Report

Revision History

Issue	Date	Status	Issued to
S3.P01	21/01/2022	First issue	BMCE
S3.P02	28/02/2022	Final issue	ВМСЕ

1 Introduction

JBA Consulting have been contracted by Land Development Agency to undertake a Stage 1 SW Audit of the surface water drainage design prepared by Barrett Mahony Consulting Engineers (BMCE) for the proposed SHD at Dundrum Central Mental Hospital site, Dundrum, Co. Dublin. The surface water audit was undertaken in advance of a Strategic Housing Development (SHD) planning submission to An Bord Pleanála.

The subject of this Stage 1 stormwater audit is to review the proposed surface water drainage design and sustainable urban drainage system (SuDS) proposals for the proposed development. The audit has been completed in accordance with Dún Laoghaire Rathdown County Council's (DLRCC) Stormwater Audit Procedure (Rev 0, Jan 2012) as set out below.

Stage 1 – Pre Planning Stage: A Stage 1 audit shall be carried out of the Stormwater Impact Assessment (SIA) prepared by the applicant. The audit will focus on the SUDS management train and whether the applicant has carefully considered all known SUDS techniques and applied the most appropriate type(s) for the site that will ensure improved water quality, biodiversity and volume control.

1.1 Report Structure

The Feedback Form in Appendix A identifies queries raised in this report which are to be answered by the Design Engineers. Once an 'Acceptable' status is achieved for each query the audit is deemed to be closed out.

The results of the audit are set out hereunder, where items raised in the feedback form are shown in bold within this report.

1.2 Relevant Studies and Documents

The following documents were considered as part of this surface water audit:

- Greater Dublin Strategic Drainage Strategy (GDSDS);
- Greater Dublin Regional Code of Practice for Drainage Works;
- The SUDs Manual (CIRIA C753).
- Current Development Plan

1.3 Key Considerations and Benefits of SuDS

The key benefits and objectives of SuDS considered as part of this audit and listed below include:

- Water Quantity
- Water Quality
- Amenity
- Biodiversity

www.jbaconsulting.ie www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA

JBA

nager

JBA Project Code2021s1635ContractSHD, Dundrum CMH, Dundrum, Co DublinClientLand Development AgencyPrepared byChris WasonSubjectStormwater Audit Stage 1 Report

Which can be achieved by;

- Storing runoff and releasing it slowly (attenuation)
- Harvesting and using the rain close to where it falls
- Allowing water to soak into the ground (infiltration)
- Slowly transporting (conveying) water on the surface
- Filtering out pollutants
- Allowing sediments to settle out by controlling the flow of the water

1.3.1 SuDs Management Train

A SuDs Management Train is a robust pollutant removal strategy. The treatment train can comprise four stages:

- 1. Prevention
- 2. Source Control
- 3. Site Control
- 4. Regional control

In s2.4 of the report BMCE have demonstrated that a SuDs management train has been sufficiently demonstrated for the majority of runoff with at least two SuDS components, except for some locations identified above. A 'Simple Index Approach' has been applied to pollutant hazard analysis which is considered appropriate.

2 Proposed Development (SHD) at Dundrum CMH, Dundrum, Co. Dublin

The subject site is located the Central Mental Hospital, Dundrum Road, Dundrum, Dublin 14 as shown in Figure 1

Figure 1- Site Location

The total area is c9.42ha.and the positively drained area is c6.46ha. comprising of three catchment areas

JBA Project Code2021s1635ContractSHD, Dundrum CMH, Dundrum, Co DublinClientLand Development AgencyPrepared byChris WasonSubjectStormwater Audit Stage 1 Report

of Catchment A (1.403ha.), Catchment B1 (4.05ha.) and Catchment B2 (1.014ha.).

Existing buildings and infrastructure on the site will be demolished. The existing buildings discharge to a combined drainage system which connects to the DN300 combined sewer in the Dundrum Road.

2.1 Review of SW Drainage Proposals

The review is based on the following documents provided by BMCE on 12th January;

- DCD-BMD-00-00-DR-C-1000 Roads Layout & Levels.pdf
- DCD-BMD-00-00-DR-C-1020 Buried Surface Water Drainage Layout.pdf
- DCD-BMD-00-00-DR-C-1021 Buried Foul Water Drainage Layout.pdf
- DCD-BMD-00-00-DR-C-1022 Buried Foul Water & Surface Water Drainage Layouts Combined.pdf
- DCD-BMD-00-00-DR-C-1025 Surface Water Overland Flow Routes.pdf
- DCD-BMD-00-00-DR-C-1030 SuDS Layout.pdf
- DCD-BMD-00-00-DR-C-1039 Existing Buried Drainage Layout.pdf
- DCD-BMD-00-00-DR-C-1115 Surface Water Drainage Longitudinal Sections Sheet 1 of 3.pdf
- DCD-BMD-00-00-DR-C-1116 Surface Water Drainage Longitudinal Sections Sheet 2 of 3.pdf
- DCD-BMD-00-00-DR-C-1117 Surface Water Drainage Longitudinal Sections Sheet 3 of 3.pdf
- DCD-BMD-00-00-DR-C-1205 SuDS Details. Typical Green & Blue Roof Details.pdf
- DCD-BMD-00-00-DR-C-1206 SuDS Details. Permeable Paving Details.pdf
- DCD-BMD-00-00-DR-C-1207 SuDS Details. Filter Drain Typical Details.pdf
- DCD-BMD-00-00-DR-C-1208 SuDS Details. Typical Stormtech Attenuation Tank Details.pdf
- DCD-BMD-00-00-DR-C-1209 SuDS Details. Typical Bio-retention Area & Tree Pit Details.pdf
- DCD-BMD-00-00-DR-C-1210 SuDS Details. Swales, Detention Basin & Over-the-edge Road Drainage .pdf
- DCD-BMD-00-00-DR-C-1225 Standard Surface Water Drainage Details.pdf
- IR.01 Infrastructure Report PL2_full.pdf

2.1.1 Pre-Planning Meeting

Various meetings and correspondence have been held with DLRCC which has been set out in s1.4 of the BMCE report.

2.1.2 Site Characteristics

A site investigation was carried out by S.I Ltd. In 11/21 and a summary of the report provided in Appendix 1 of the BMCE report. Four number soakage tests were completed. Two failed the test and two provided infiltration 'f' values of 7.36x10-5 m/s (SA02) and 2.2x10-4 m/s (SA703) which are located in the upper north/northwest of the development (Catchment B2). The ground is typically made ground overlying a black slightly sandy gravelly silty CLAY and natural ground conditions consistent with cohesive soils encountered across the site.

Groundwater was encountered in the majority of boreholes and a third of the trial pits, ranging in depth from 0.8mbgl to 3.3mbgl typically. Standpipes were provided in 5 locations. Details of where GW was encountered are not provided and consideration of SuDS proposals will have to take cognisance of the depth of GW rising within 1m of the base. It may be required to line SuDs features

Details of trial holes and boreholes are not included in the report submitted.

The SOIL type adopted by BMCE is SOIL 4 and SPR 0.47 which would seem appropriate with poor infiltration although the northwest area of the site Catchment B2 could be classed as good infiltration

BMCE to clarify whether infiltration has been considered within Catchment B2.

BMCE to provide more details and assessment of where GWL is across the site and identify which SuDS features mare to be lined and unlined.

JBA

JBA

anagem

JBA

JBA Project Code	2021s1635
Contract	SHD, Dundrum CMH, Dundrum, Co Dublin
Client	Land Development Agency
Prepared by	Chris Wason
Subject	Stormwater Audit Stage 1 Report

The general fall across the lands is from south to north.

2.2 Design Parameters

Rainfall parameters can be estimated using Met Eireann data, using the Flood Studies Report (FSR) values or the values in the GDSDS. The Met Eireann method can be more representative of a site if selected correctly. The design values used by BMCE and considered by JBA are shown below:

Rainfall parameters	Designer values	JBA Comment
M5_60	1 8	Ok - Met Eireann
Ratio R	0 .278	Ok – Met Eireann
SAAR (mm)	772	From Met Eireann. Default in UKSuDS is 840 but use 772
Qbar I/s	31.86	34.97 - UKSuDs
Climate Change	20%	Ok – 10% required in GDSDS

The BMCE report states that the discharge limit from the site (Qbar) has been taken as a conservative 29 I/s which is less than those noted above. The runoff rate for each catchment is set out in table 2.3 (BMCE report) and repeated below;

Table 2.3: Runoff rate per catchment				
Catchment	Area (m²)	Drained Area (m ²)	Calculated Qbar (l/s)	Proposed Qbar (I/s)
Catchment A	28 593	14 029	6.911	7.0
Catchment B1	47 962	40 499	19.951	18.0
Catchment B2	17 319	10 146	4.998	4.0
Total	93 874*	64 674	31.86	29.0

Drg. 1020/PL4 identifies the hydrobrakes that control the flow from the site as;

Catchment A: Node S1.19 = 7 l/s

Catchment B1: Node S10.8 = 14I/s and Node S7.1 = 2I/s and node S9.1 = 2.0I/s - Total 18 I/s

Catchment B2: Node S4.7 = 4l/s

The total pass forward flow (29 l/s) is deemed to satisfy the site greenfield runoff.

The runoff coefficient has been set to 1.0 from the default Flow hydraulic model values of 0.75 (summer) and 0.84 (winter) and designer Cv applied to different surfaces as shown below in Table 2.1 repeated below;

JBA Project Code2021s1635ContractSHD, Dundrum CMH, Dundrum, Co DublinClientLand Development AgencyPrepared byChris WasonSubjectStormwater Audit Stage 1 Report

The runoff coefficients used are as prescribed in the DLR Draft Development plan for 2022:

Table 2.1: Runoff Coefficients

Type of areas	CV
Landscaping (Grass / Soft)	0.3
Intensive Green Roof / Podium	0.8
Extensive Green Roof	0.8
Permeable Paving	0.8
Impermeable Surface (incl tree pits)	0.9
Standard Roof (impermeable)	0.95

BMCE state that these values are taken from the Draft Development Plan 2022-2028 and would generally seem reasonable (JBA do not have access to this draft document). However, the landscaping (grass) value of 0.3 might seem low for a SPR value of 0.47 and it could be expected that the SPR value would be applied to contributing grassed areas.

BMCE to confirm if Cv value of 0.3 for grassed areas is adequate for this site with SPR of 0.47.

2.3 Surface Water Drainage Strategy

The development is split into three catchments which are attenuated separately to the combined value of 29 l/s, which is less than Qbar for the site.

A fairly comprehensive SuDS management system has been proposed by BMCE which is generally clearly laid out and should achieve the general principles and aims of SUDS. A pollutant analysis has also been undertaken. A review of the proposals is considered in more detail below.

A FLOW model has been used for the drainage analysis. Pipe design calculations are not provided but simulation runs for the three catchments are provided for the 5-, 30- and 100-year storm return periods.

No infiltration has been allowed for in the design except for the detention basin.

2.3.1 SuDS Measures Considered

SuDS Technology	Comments
Green/Blue Roofs	Blue/Green roofs are proposed, both intensive and extensive. The coverage exceeds the DLRCC requirement of 60%
Swale, Filter Drain, Infiltration Trench	Some filter drains are proposed to drain some roads.
Tree Pits, Bioretention Areas, Rain Gardens	Extensive tree pits and bio areas are proposed to take roof and road
Permeable Paving	Permeable paving is proposed around the site but not designed for any infiltration. Typical detail drawings are provided but it is not clear if the pavements to be provided are lined or unlined.
Soakaways	None proposed. SOIL type 4 would indicate very poor infiltration but some areas of Catchment B2 would be considered suitable for soakaways/infilttration
Detention Basins, Retention Ponds, Stormwater	A detention basin is proposed in catchment B2

www.jbaconsulting.ie www.jbaconsulting.com www.jbarisk.com www.jbaenergy.com

JBA Project Code2021s1635ContractSHD, Dundrum CMH, Dundrum, Co DublinClientLand Development AgencyPrepared byChris WasonSubjectStormwater Audit Stage 1 Report

Wetlands	
Rainwater Harvesting	None proposed
Petrol Interceptor	The report refers to basement car park drainage and use of a PI to pump to the sw network. No details are provided. It is also queried if the basement drainage should connect to the foul system.
Attenuation	RC tanks, stormtech units and geocellular tanks are proposed. The use of RC tanks outside of buildings is queried and alternatives may be possible.
Other	N/A

2.3.2 Review of drainage drawing 1020/PL4 and SuDS drawing 1030/PL3;

A number of storage tanks are concrete tanks which are not normally considered acceptable. For those under or within building structures then no other alternative may be available. However, tanks H, J are not located under buildings and there could be more suitable alternatives. Use of concrete tanks is also subject to Planning Authority approval.

BMCE to clarify the use of concrete tanks and consider alternatives outside building footprints.

The majority of RG's are connected to tree pits, bio areas, filter drains or permeable paved areas. A small number of RG's appear to be connected directly to the sw network e.g.;

- Adjacent to s12.2.
- Two road gullies at the BM-Road 2 entrance are connected directly to the to the sw network. Although only a small area could these be connected to a filter drain or tree pit?

Road 2: from S1.8A to S1.11 - how is this road drained? No RG's or filter drain is shown. Also, there is a junction table which might interfere with the flow path. Raised speed tables are located in other areas.

It is not clear how all road sections are to be drained and how speed tables/junction tables might interfere with flow paths. All gullies, if possible, should be connected to a SuDs feature. BMCE to clarify.

2.3.3 Review of BMCE report

S2.4.6.2 refers to drainage of the basement car park pumped to the storm network via a PI. It is more usual to pump highly contaminated underground car park drainage (created from washdown rather than rainfall) to the foul system as per the GDSDS CoP s3.18. It is not clear what the DLRCC policy is on this.

BMCE to justify disposal of u/g car park drawing to the storm network rather than pumped to foul, subject to Planning Authority requirements.

S2.4.-Catchment A refers to pumping Block 1 and eastern side of Block 2 to catchment B but this does not make sense with the layout shown on the drawing. Is pumping of storm water still proposed? Pumping is also referred to in the legend of drg. 1020/PL4

BMCE to clarify if pumping of storm water is still proposed and update the report and drawings if not. It should be noted that pumping of storm water is not preferred by the Planning Authority.

S2.3.4.4 refers to provision of a raised drainage pipe in the paving substrata by 100mm to give interception storage. It is queried if there is no infiltration if this could be provided. Also, the typical detail provided shows a land drain below the pavement substrata.

BMCE to justify their assumption that interception storage is provided in the undrained pavement substrata and amend the typical detail to suit if appropriate.

JBA

JBA

nager

JBA Project Code2021s1635ContractSHD, Dundrum CMH, Dundrum, Co DublinClientLand Development AgencyPrepared byChris WasonSubjectStormwater Audit Stage 1 Report

2.3.4 Review of Hydraulic Model

FLOW hydraulic model has been used for the design. A Detailed Area Summary is provided in Appendix 7 of the BMCE report which includes for surface type breakdown with Cv factor applied. A spot check would indicate that the aeras in the model are complimentary to those in the summary sheet for each node.

- 20% climate change allowed for in the simulation for 5-, 30- and 100-year storms which are analysed for the range of durations and is satisfactory.
- Hydrobrakes have min.50mm orifice except for tank K (42mm dia) but all contributing areas would appear to connect to a SuDS element first which would help to mitigate blockage
- No TWL within 500mm of adjacent FFL of buildings
- Drained area breakdown provided in Appendix 7

Some queries for BMCE to address are listed below

- Pipe design calculations are not provided. The summary calculations for simulation runs indicate no flooding for the 100-year event.
- In Catchment B1 hydrobrake flow controls are provided at s7.1, s9.1, s11.4 and s10.5 with two tank structures allocated to them. One of these is related to the tank as shown on the drawing, the other is a depth of 0.06 and varying area to give volumes of 119m3, 66m3 129m3 and 66m3 respectively with porosity set at 0.95. It is not clear what these storage structures relate to.
- No infiltration has been allowed for except for the detention basin (node s6.4) with a rate of 7.3x10-5 m/s, based on the lower of the two soakage tests undertaken. However, no soakage test was undertaken in the vicinity of the proposed detention basin and BMCE and details of nearby TH's and BH's nor provided. BMCE should justify the rationale.
- JBA would recommend that BMCE put head + pass forward flow on drawings for hydrobrake controls
- Stormtech storage units are proposed for tanks A & D. The type of stormtech unit proposed is not clear but the typical detail provided (drg. 1208/PL3) is a SC740 with a typical available head of 0.9m. Manufacturer's design details of the actual units to be provided to match the volume of storage required should be provided at detailed design stage if acceptable to the Planning Authority.
- Tank A (S14.7) has a design head in the Model of 0.6m which would be more suitable for a SC310 stormtech unit. The head on drg is shown as 1.06m.
- Tank D (S10.5) has a design head in the Model of 1.6m which would be more appropriate for a MC3500 type unit. The head on the drg. Is shown as 1.06m
- Detention basin tank (S6.4) is in the Model but no hydrobrake control is indicated as shown on the drawing.

Catchment B2

- Tank G (S4.7) has a volume of 260m3 in the Model but only 171m3 is indicated on the drawing.
- Drg 1205/PL4 provides typical details of permeable paving, both unlined and lined, but it is not clear whether the units proposed will be lined or unlined. The type to be adopted would make a difference in the assessment of interception as per Table 24.6 of the CIRIA manual.

2.3.5 Interception/Treatment

Interception of runoff is intended to prevent any runoff for small rainfall events which are less than 5mm (and up to 10mm if possible). Treatment of 15mm is required if interception is not provided.

Table 24.6 of the CIRIA manual provides indication of deemed to satisfy criteria and it is considered that this should be complied with. All sources of runoff should also be intercepted where possible. A high level of Interception provided for some parts of the site is not to be considered as adequate compensation for a low degree of interception provision for other locations. Compliance is required for the whole site, or at least for road/paved areas, for it to be considered effective. Interception mechanisms are based on runoff retention. This can be achieved using rainwater harvesting or using soil storage and evaporation. Either

JBA Project Code	2021s1635
Contract	SHD, Dundrum CMH, Dundrum, Co Dublin
Client	Land Development Agency
Prepared by	Chris Wason
Subject	Stormwater Audit Stage 1 Report

infiltration or transpiration rates can dispose of the runoff from minor events to enable the next event to be captured.

Interception of flow is dealt with in s2.4.5 of the BMCE report and assumes varying storage rates for different surfaces. Interception is dealt with by volumetrics which is not necessarily applicable. No infiltration is assumed in the design and the SOIL type=4 would typically indicate a clay/ impervious soil. Whilst storage and retention within different surfaces can provide for some interception it can be very subjective as to how much, especially if there is no infiltration.

Impermeable roof areas for Blocks 09 are connected to small permeable paved areas. There is no infiltration in this area and the impermeable area drained should not exceed that of the permeable paved area (if unlined) to comply with table 24.6 of the CIRIA manual.

No RWP are shown draining the impermeable roofs on Blocks 08. BMCE should provide details and if they are draining to permeable paving areas or tree pits they should be in compliance with table 24.6 of the CIRIA manual and indicate if pavements are lined or unlined. It is also noted that tree pits are proposed immediately adjacent to some buildings in Blocks 08 and BMCE should confirm that this is acceptable

The Gate Lodge roof and paved area are drained to a bioretention area which also takes one road gully. Table 24.6 states that unlined components can take up to five times the vegetated surface area. BMCE to provide details of the impermeable area and bioretention area to show compliance

BMCE to clarify that adequate provision for interception for all impermeable surfaces has been made where possible and in compliance with Table 24.6 of the CIRIA manual.

2.3.6 Exceedance Flows

BMCE have provided a drawing 1025/PL3 showing overland flow routes in case of blockage etc. FLOW analysis has been provided assuming 50% blockage of the outlets.

2.4 Health & Safety and Maintenance Issues

The proposed drainage system comprises SuDS devices, traditional road gullies, manholes, attenuation systems, a petrol interceptor and underground pipes. These elements are considered acceptable from a Health & Safety perspective once supplier/manufacturers guides are followed and complied with during the detailed design, construction and operation.

Optimum performance of the SUDs treatment train is subject to the frequency of maintenance provided. At detailed design stage, it is recommended that a maintenance regime be adopted.

Particular consideration is required at detailed design stage to the design, maintenance requirements and whole life plan (and replacement) of the SuDS system as a whole.

Regular maintenance of the hydrobrake will be required to remove any blockages, particularly in the wake of heavy rainfall events or local floods.

It is recommended that the petrol interceptors be fitted with an audible high-level silt and oil alarm for maintenance and safety purposes. Regular inspection and maintenance is recommended for the petrol interceptor.

Please note that silt and debris removed from the petrol interceptor during maintenance will be classified as contaminated material and should only be handled and transported by a suitably licensed contractor and haulier and disposed of at a suitably licensed landfill only.

2.5 Items to be considered at Detailed Design Stage

There are a number of items that require attention at detailed design stage. A summary of same are as follows:

JBA Project Code	2021s1635
Contract	SHD, Dundrum CMH, Dundrum, Co Dublin
Client	Land Development Agency
Prepared by	Chris Wason
Subject	Stormwater Audit Stage 1 Report

- Proper detail design and construction of SuDS devices is paramount to ensure long term optimum hydraulic performance as well as maximisation of biodiversity opportunity. It is recommended that a collaborated approach to detail design is adopted between engineers, architects, ecologists and Landscape Architects.
- Location, layout and levels of basement vents should be cognisant of exceedance flow routes.
- Operation & Maintenance regime for each of the components on site;
- Hydrobrake selection to be give due consideration to hydraulic performance, actual head behind the unit, maximum potential clear passage size and maintenance requirements.

2.6 Audit Report sign Off

Nego-

Audit Report Prepared by:

Chris Wason BEng CEng MICE Principal Engineer

Leanne Leonard

Approved by:

Leanne Leonard BEng (Hons) MIEI Design Engineer

Note:

JBA Consulting Engineers & Scientists Ltd. role on this project is as an independent reviewer/auditor. JBA Consulting Engineers & Scientists hold no design responsibility on this project. All issues raised and comments made by JBA are for the consideration of the Design Engineer. Final design, construction supervision, with sign-off and/or commissioning of the surface water system so that the final product is fit for purpose with a suitable design, capacity and life-span, remains the responsibility of the Design Engineers.

JBA Project Code2021s1635ContractSHD, Dundrum CMH, Dundrum, Co DublinClientLand Development AgencyPrepared byChris WasonSubjectStormwater Audit Stage 1 Report

Appendix A – Audit Feedback Form

JBA Consulting Stormwater Audit - Stage 1 Feedback Form			
Project:	SHD at CMH Dundrun Road, Dundrum, Dunlin 14		
Date:	20/01/2022		
JBA Reviewers	Chris Wason		
Status	S3/P02		
Project Number:	2021s1635		

Item No.	JBA Review Comment	Comment/Clarification Request/Suggested Mitigation	Response from Client/Client Representative	Acceptable / Not Acceptable
	21/01/2022	21/01/2022	28/02/2022	28/02/2022
	Reference Documents			
	see SW Audit Report			
1	Site investigation and ground conditions 1 -the site investigation indicates a cohesive natural soil across the site and BMCE have adopted a SOL type 4 which seems appropriate. However, soakage teets in Catchment B2 indicate that some areas may have good infiltration. 2 - GWL across the site may pose a problem and SuDs elements may need to be lined if the level is within 1m of the base of proposed SuDS features. General details of GWL have been given but no specifics	 Would BMCE consider infiltration in the Catchment B2 or at least confirm that SuDs units will be unlined if GWL is suitable. It is not clear from the information provided if, or where, GW may be an issue and which SuDS elements may be affected and may be need to be lined. BMCE should confirm the GWL across the site and indicate if SuDs elements are to be lined or unlined 	 Yes, infiltration in Catchment B2 will be considered. SuDS units on this project are generally 'unlined' (they have a high permeablity geotextile lining only). Based on the SI report and experience in the south Dublin area, the groundwater table is likely to be 3.0-4.0m bgl but with higher level water perched on top of and travelling over the relatively impermeable boulder clays. SuDS devices located below the perched water level will be lined. Further site investigations (trial pits) will be carried out prior to construction to confirm the water table levels in more detail at the locations of the larger buried devices e.g. the attenuation tanks (these are generally unlined & indicated 'Permeable' in the tank details note on BM drg C1020). 	Accepted
2	How Model (1) 1 - It is noted that the default runoff coefficient in the model has been edited to 1 and that coefficients for different surface types has been applied which generally seem reasonable (and in agreement with draft DLRCC Development Plan). The Cv for grassed lands is 0.3 but he soil investigation indicates cohesive soils. 2 - In Catchment B1 hydrobrake flow controls are provided at 57.1, s9.1, s11.4 and s10.5 with two tank structures allocated to them. One of these is related to the tank as shown on the drawing, the other is a depth of 0.065 and varing area to give volumes of 119m3, 66m3 129m3 and 66m3 respectively with porosity set at 0.95. It is not clear what these storage structures relate to. 3 - No infittation has been allowed for except for the detention basin (node s6.4) with a rate of 7.3x10-5 m/s, based on the lower of the two soakage tests undertaken. However, no soakage test was undertaken in the vicinity of the proposed detention basin and BMCE and details of nearby TH's and BH's are not provided. BMCE should justify the rationale. 4 - IBA would recommend that BMCE put head + pass forward flow on drawings for hydrobrake controls 5 - Stormtech storage units are proposed for tanks A & D. The type of stormtech unit proposed is not clear but the typical detail provided (drg. 1208/F13) is a SC40 with a typical available head of 0.9m. Manufacturer's design details of the actual units to be provided to match the volume of storage required should be provided at detailed design stage if acceptable to the Planning Authority.	 BMCE to confirm that the Cv for grassed areas of 0.3 is suitable bearing in mind the SPR value is 0.47. BMCE to clarify the second storage tank inputs wit depth of 0.065mm BMCE to justify the use of the infiltration rate at the detention basin location BMCE to justify the use of the infiltration storate rate on the drawing for all flow controls BMCE should indicate the type of Stormtech unit proposed and also provide calculation from Stormtech to confirm the actual size required to suit the volume needed. Flow analysis should be representative of the storage type proposed. 	1 - The SOIL Class for the existing undeveloped greenfield site is esimated as Class 4 which has an SPR value of 0.45 (low permeability boulder clay typical of the Dublin area). The development, by its nature will change the topography of the site, and higher quality topsoil for landscaping purposes will be applied to all soft landscape areas to ensure proposed planting can thrive, and to allow for a greater level of natural infiltration through the soil. It is therefore reasonable to use a Cv value of 0.3 bearing in mind the current industry guidance which suggest run-off coefficients from soft landscaping in the region of 0.10-0.25. A run-off coefficient of 0.3 has been used in the design of the proposed development to account for any run-off arising from the areas of soft landscaping. 2 - The storage tanks with a depth of 0.065m represent the various blue roofs on the different blocks (where applicable) 3 - The detention basin will be a dry, landscaped area with the ability to attenuate surface water in high storm events. Due to the fact that the facility will be able to dry out, infiltration will be possible when it fills with water. The infiltration rate used in the calculations is the average result from the two nearby soakaway tests. (0.264m/hr - As per section 6.3 of Site Investigation) 4 - Yes, the head and discharge rate will be put on drawing C-1020 for all controls. 5 - Stormtech type proprietary arch unit 740 deep assumed throughout. Tanks A & D was updated in the Flow model to reflect 60% typical porosity with a depth of 1.1m.	Accepted
3	Flow Model (2) 1 - Tank A (514-7) has a design head in the Model of 0.6m which would be more suitable for a SC310 Stormetch unit. The head on drg is shown as 1.06m. 2 - Tank D (510.5) has a design head in the Model of 1.6m which would be more appropriate for an MC3300 type unit. The head on the drg. Is shown as 1.06m 3 - Detention basin tank (SA 4) is in the Model but no hydrobrake control is indicated as shown on the drawing Catchment 82 4 - Tank G (54.7) has a volume of 260m3 in the Model but only 171m3 is indicated on the drawing.	 2 - BMCE should indicate the type of Stormtech unit proposed and also provide calculation from Stormtech to confirm the actual size required to suit the volume needed. Flow analysis should be representative of the storage type proposed. 3 - Is a hydrobrake proposed at node S6.4 and if so should this be represented in the Flow model. 4 - Please confirm the correct volume for this tank and ensure Mode land drawing are complimentary 	1 & 2 - Noted. Calculations will be obtained off Stormtech or an alternative unit provided (if used) at tender preparation stage. BM will re-visit the calculations and update the sw drainage drawing C-1020 to indicate the correct unit type for each Stormtech type tank. 3 - Flow control to the detention basin is provided at manhole 56.4 as noted on BM drg C-1020. 4 - The correct volume is 258 cum. The drawing will be updated to reflect this. The area was shown in the drawing text box - 171m2.	Accepted
JBA Consulting Stormwater Audit - Stage 1 Feedback Form				
---	--	--	--	--
Project:	Project: SHD at CMH Dundrun Road, Dundrum, Dunlin 14			
Date:	20/01/2022			
JBA Reviewers	Chris Wason			
Status	S3/P02			
Project Number:	2021s1635			

Item No.	JBA Review Comment	Comment/Clarification Request/Suggested Mitigation	Response from Client/Client Representative	Acceptable / Not Acceptable
	21/01/2022	21/01/2022	28/02/2022	28/02/2022
4	Interception/Treatment. 1 - Drg 1205/PL4 provides typical details of permeable paving, both unlined and lined, but it is not clear whether the units proposed will be lined or unlined. The type to be adopted would make a difference in the assessment of interception as per Table 24.6 of the CIRIA manual 2 - Impermeable roof areas for Blocks 09 are connected to small permeable paved areas. Are these to be lined or unlined? Are they in compliance with table 24.6 of the CIRIA manual 3 - No RWP are shown draining the impermeable roofs on Blocks 08. 4 - It is also noted that tree pits are proposed immediately adjacent to some buildings in Blocks 08 and BMCE should confirm that this is acceptable. 5 - The Gate Lodge roof and paved area are drained to a bioretention area which also takes one road gully. Table 24.6 states that unlined components can take up to five times the vegetated surface area.	 I-What are the type (s) of permeable paving to be used from the typical details provided BMCE to clarify that adequate provision has been made for all impermeable surfaces BMCE should provide details and if they are draining to permeable paving areas or tree pits they should be in compliance with table 24.6 of the CIRIA manual and indicate if pavements are lined or unlined. - are tree pits immediately adjacent to building ok? BMCE to confirm. - BMCE to provide details of the impermeable area and bioretention area to show compliance with Table 24.6 of the CIRIA manual. 	 As noted on BM drg C-1207 a Type B system (partial infiltration) will apply throughout except within 1.5m of building foundations or 1.5m of the site boundary where Type C will apply (-impermeable membrane - no infiltration). We will update the note so that this is clearer. Note 1: During a recent IEI Seminar on Perm Pavements it was stated that the normal rule of 5m separation distance between soakaways and building foundations was unduly onerous for a thin flat soakaway like a permeable pavement. 1.5m or less was suggested unless there are significant additional inflows. Note 2 - On the sw drainage layout drawing, BM drg no C-1020, Attn tank 'F' which is a permeable pavement with a deepened granular base, will have an impermeable membrane up to 5m from the building. The roof areas of Blocks 08 & 09 will connect to a soakaway in each rear garden. The soakaway sille ach have a high level overflow to the site sw drainage system. Infiltration tests along these gardens will be carried prior to construction to verify infiltration rates and the required soakaway sizes. Noted. Drainage will be locally revised if necessary to ensure compliance with Table 24.6. Yes, tree pits/bio-rention areas beside buildings can take water directly from rainwater downpipes. These pits will be lined with an impermeable lining. This will be noted on the sw drainage layout drg no. C-1020. Following discussions with the Landscape Architect the large area of paving around the gate lodge with be revised to perm. paving and the bio retention area will be elarged. These will be sufficient to take the road and road drainage while complying with Table 24.6. 	Accepted
5	Review of Drawing 1020/PL4 and 1030/PL3 1 - a number of RC tanks are proposed which would not normally be considered acceptable but no other option may be available. However, H & J do not seem to be located under or within buildings 2 - A small number of RG's appear to be connected directly to the sw network e.g.; •#djacent to s12.2. How road guilies at the BM-Road 2 entrance are connected directly to the to the sw network. Although only a small area could these be connected to a filter drain or tree pit? 3 - Road 2: from S1.8A to S1.11 - how is this road drained? No RG's or filter drain is shown. Also, there is a junction table which might interfere with the flow path. Raised speed tables are located in other areas	 Use of concrete tanks is subject to Planning Authority approval. BMCE to confirm that no other suitable alternatives are available, particularly with regard to tanks H & J which appear to outside the building lines. BMCE to review RG connections and connect to a SuDS feature where possible BMCE to review all sections of road and confirm that adequate provison has been made for their drainage and that any new RG are connected to a SuDS feature. 	1 -Conrete tank H is an extension of the Block 10 basement and will need to remain a concrete tank. Tank J will be revised to a tank constructed with proprietary cellular units with a permeable lining. A low infiltration value has been used in the calculations (0.264m/hr - As per section 6.3 of Site Investigation). 2 - All RG locations will be reviewed and addressed. 3 - All RG locations will be reviewed.	Accepted
6	Review of BMCE report 1 • 52.4.6.2 refers to drainage of the basement car park pumped to the storm network via a Pl. It is more usual to pump highly contaminated underground car park drainage (created from washdown rather than rainfall) to the foul system as per the GDSDS CoP s3.18. It is not clear what the DLRCC policy is on this. 2 - 52.4Catchment A refers to pumping Block 1 and eastern side of Block 2 to catchment B but this does not make sense with the layout shown on the drawing. Is pumping of storm water still proposed? Pumping is also referred to in the legend of drg. 1020/PL4 3 - 52.3.4.4 refers to provision of a raised drainage pipe in the paving substrata by 100mm to give interception storage. It is queried if there is no infiltration if this could be provided. Also, the typical detail provided shows a land drain below the pavement substrata.	 BMCE to justify disposal of u/g car park drawing to the storm network rather than pumped to foul, subject to Planning Authority requirements BMCE to clarify if pumping of storm water is still proposed and update the report and drawings if not. It should be noted that pumping of storm water is not preferred by the Planning Authority. BMCE to justify their assumption that interception storage is provided in the undrained pavement substrata and amend the typical detail to suit if appropriate. 	1 - Basement drainage will be pumped to foul network. 2 - Pumping is not proposed. The note in the Infrastructure Report is an error and will be removed. 3 - The permeable pavements are typically 'unlined' i.e. have a high permeability geotextile lining except in proximity to buildings or the site boundary where an impermeable membrane should be used as noted on BM drg C-1207. Inflittation in the top layers of soil on site/granular fill will be sufficient to ensure that interception storage is achieved. In the case of the permeable paved area taking part of the run-off from Block OG, a shallow soakaway test will be carried out prior to construction to confirm the infiltration rate.	Accepted

Barrett Mahony Consulting Engineers

Dublin:

Sandwith House, 52-54 Lower Sandwith Street, Dublin 2, D02 WR26, Ireland. Tel: +353 1 677 3200

London:

12 Mill Street, London, SE1 2AY, United Kingdom Tel: +44 203 750 3530.

Sofia: 19 Yakubitsa Street, Lozenets, Sofia 1164, Bulgaria Tel: +359 2 494 9772

WWW.BMCE.IE